Autoequivalences of toric surfaces
HTML articles powered by AMS MathViewer
- by Nathan Broomhead and David Ploog
- Proc. Amer. Math. Soc. 142 (2014), 1133-1146
- DOI: https://doi.org/10.1090/S0002-9939-2014-11530-9
- Published electronically: January 30, 2014
- PDF | Request permission
Abstract:
We show that the autoequivalence group of the derived category of any smooth projective toric surface is generated by the standard equivalences and spherical twists obtained from $-2$-curves. In many cases we give all relations between these generators. We also prove a close link between spherical objects and certain pairs of exceptional objects.References
- Michael Artin, Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math. 84 (1962), 485–496. MR 146182, DOI 10.2307/2372985
- Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, and Antonius Van de Ven, Compact complex surfaces, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 4, Springer-Verlag, Berlin, 2004. MR 2030225, DOI 10.1007/978-3-642-57739-0
- Alexei Bondal and Dmitri Orlov, Reconstruction of a variety from the derived category and groups of autoequivalences, Compositio Math. 125 (2001), no. 3, 327–344. MR 1818984, DOI 10.1023/A:1002470302976
- Tom Bridgeland and Antony Maciocia, Fourier-Mukai transforms for quotient varieties. arXiv:math.AG/9811101.
- William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037, DOI 10.1515/9781400882526
- Lutz Hille and Markus Perling, Exceptional sequences of invertible sheaves on rational surfaces, Compos. Math. 147 (2011), no. 4, 1230–1280. MR 2822868, DOI 10.1112/S0010437X10005208
- D. Huybrechts, Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006. MR 2244106, DOI 10.1093/acprof:oso/9780199296866.001.0001
- Akira Ishii and Hokuto Uehara, Autoequivalences of derived categories on the minimal resolutions of $A_n$-singularities on surfaces, J. Differential Geom. 71 (2005), no. 3, 385–435. MR 2198807
- Akira Ishii, Kazushi Ueda, and Hokuto Uehara, Stability conditions on $A_n$-singularities, J. Differential Geom. 84 (2010), no. 1, 87–126. MR 2629510
- Yujiro Kawamata, $D$-equivalence and $K$-equivalence, J. Differential Geom. 61 (2002), no. 1, 147–171. MR 1949787
- Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR 2095471, DOI 10.1007/978-3-642-18808-4
- Shigeru Mukai, Duality between $D(X)$ and $D(\hat X)$ with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153–175. MR 607081
- Tadao Oda, Convex bodies and algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 15, Springer-Verlag, Berlin, 1988. An introduction to the theory of toric varieties; Translated from the Japanese. MR 922894
- P. Orlik and P. Wagreich, Algebraic surfaces with $k^*$-action, Acta Math. 138 (1977), no. 1-2, 43–81. MR 460342, DOI 10.1007/BF02392313
- D. O. Orlov, Equivalences of derived categories and $K3$ surfaces, J. Math. Sci. (New York) 84 (1997), no. 5, 1361–1381. Algebraic geometry, 7. MR 1465519, DOI 10.1007/BF02399195
- D. O. Orlov, Derived categories of coherent sheaves on abelian varieties and equivalences between them, Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002), no. 3, 131–158 (Russian, with Russian summary); English transl., Izv. Math. 66 (2002), no. 3, 569–594. MR 1921811, DOI 10.1070/IM2002v066n03ABEH000389
- Lars Petersen and Hendrik Süss, Torus invariant divisors, Israel J. Math. 182 (2011), 481–504. MR 2783981, DOI 10.1007/s11856-011-0039-z
- Paul Seidel and Richard Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001), no. 1, 37–108. MR 1831820, DOI 10.1215/S0012-7094-01-10812-0
- Damiano Testa, Anthony Várilly-Alvarado, and Mauricio Velasco, Big rational surfaces, Math. Ann. 351 (2011), no. 1, 95–107. MR 2824848, DOI 10.1007/s00208-010-0590-7
Bibliographic Information
- Nathan Broomhead
- Affiliation: Institut für Algebraische Geometrie, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
- Email: broomhead@math.uni-hannover.de
- David Ploog
- Affiliation: Institut für Algebraische Geometrie, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
- Address at time of publication: Fakultät für Mathematik, Algebraische Geometrie, Universität Duisburg-Essen, 45177 Essen, Germany
- Email: david.ploog@uni-due.de
- Received by editor(s): June 8, 2011
- Received by editor(s) in revised form: September 22, 2011, October 25, 2011, February 14, 2012, and May 11, 2012
- Published electronically: January 30, 2014
- Additional Notes: The second author was supported by DFG priority program 1388 “Darstellungstheorie”
- Communicated by: Lev Borisov
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 142 (2014), 1133-1146
- MSC (2010): Primary 14J26, 14M25, 18E30
- DOI: https://doi.org/10.1090/S0002-9939-2014-11530-9
- MathSciNet review: 3162236