Computing the Galois group of some parameterized linear differential equation of order two
HTML articles powered by AMS MathViewer
- by Thomas Dreyfus
- Proc. Amer. Math. Soc. 142 (2014), 1193-1207
- DOI: https://doi.org/10.1090/S0002-9939-2014-11826-0
- Published electronically: January 24, 2014
- PDF | Request permission
Abstract:
We extend Kovacic’s algorithm to compute the differential Galois group of some second order parameterized linear differential equation. In the case where no Liouvillian solutions could be found, we give a necessary and sufficient condition for the integrability of the system. We give various examples of computation.References
- Primitivo B. Acosta-Humánez, Galoisian approach to supersymmetric quantum mechanics, PhD dissertation, Universität Politecnica de Catalunya, 2009.
- Primitivo B. Acosta-Humánez, Juan J. Morales-Ruiz, and Jacques-Arthur Weil, Galoisian approach to integrability of Schrödinger equation, Rep. Math. Phys. 67 (2011), no. 3, 305–374. MR 2846216, DOI 10.1016/S0034-4877(11)60019-0
- Donald G. Babbitt and V. S. Varadarajan, Deformations of nilpotent matrices over rings and reduction of analytic families of meromorphic differential equations, Mem. Amer. Math. Soc. 55 (1985), no. 325, iv+147. MR 787539, DOI 10.1090/memo/0325
- P. J. Cassidy, Differential algebraic groups, Amer. J. Math. 94 (1972), 891–954. MR 360611, DOI 10.2307/2373764
- Phyllis J. Cassidy and Michael F. Singer, Galois theory of parameterized differential equations and linear differential algebraic groups, Differential equations and quantum groups, IRMA Lect. Math. Theor. Phys., vol. 9, Eur. Math. Soc., Zürich, 2007, pp. 113–155. MR 2322329
- Frédéric Chyzak, Fonctions holonomes en calcul formel, Thèse de doctorat, École polytechnique, 1998. INRIA, TU 0531, 227 pages.
- Anne Duval and Michèle Loday-Richaud, Kovačič’s algorithm and its application to some families of special functions, Appl. Algebra Engrg. Comm. Comput. 3 (1992), no. 3, 211–246. MR 1325757, DOI 10.1007/BF01268661
- S. Gorchinskiy and A. Ovchinnikov, Isomonodromic differential equations and differential tannakian categories. To appear in J. Math. Pures Appl.
- Ehud Hrushovski, Computing the Galois group of a linear differential equation, Differential Galois theory (Będlewo, 2001) Banach Center Publ., vol. 58, Polish Acad. Sci. Inst. Math., Warsaw, 2002, pp. 97–138. MR 1972449, DOI 10.4064/bc58-0-9
- Charlotte Hardouin and Michael F. Singer, Differential Galois theory of linear difference equations, Math. Ann. 342 (2008), no. 2, 333–377. MR 2425146, DOI 10.1007/s00208-008-0238-z
- Peter A. Hendriks and Marius van der Put, Galois action on solutions of a differential equation, J. Symbolic Comput. 19 (1995), no. 6, 559–576. MR 1370622, DOI 10.1006/jsco.1995.1032
- M. van Hoeij and J.-A. Weil, Solving second order linear differential equations with Klein’s theorem, ISSAC’05, ACM, New York, 2005, pp. 340–347. MR 2280566, DOI 10.1145/1073884.1073931
- E. R. Kolchin, Differential algebra and algebraic groups, Pure and Applied Mathematics, Vol. 54, Academic Press, New York-London, 1973. MR 0568864
- E. R. Kolchin, Differential algebraic groups, Pure and Applied Mathematics, vol. 114, Academic Press, Inc., Orlando, FL, 1985. MR 776230
- Jerald J. Kovacic, An algorithm for solving second order linear homogeneous differential equations, J. Symbolic Comput. 2 (1986), no. 1, 3–43. MR 839134, DOI 10.1016/S0747-7171(86)80010-4
- Peter Landesman, Generalized differential Galois theory, Trans. Amer. Math. Soc. 360 (2008), no. 8, 4441–4495. MR 2395180, DOI 10.1090/S0002-9947-08-04586-8
- Christine Laurent-Thiébaut, Théorie des fonctions holomorphes de plusieurs variables, Savoirs Actuels. [Current Scholarship], InterEditions, Paris; Masson, Paris, 1997 (French). Mathématiques. [Mathematics]. MR 1471209
- Reinhard Schäfke, Formal fundamental solutions of irregular singular differential equations depending upon parameters, J. Dynam. Control Systems 7 (2001), no. 4, 501–533. MR 1854034, DOI 10.1023/A:1013106617301
- A. Seidenberg, Abstract differential algebra and the analytic case, Proc. Amer. Math. Soc. 9 (1958), 159–164. MR 93655, DOI 10.1090/S0002-9939-1958-0093655-0
- A. Seidenberg, Abstract differential algebra and the analytic case. II, Proc. Amer. Math. Soc. 23 (1969), 689–691. MR 248122, DOI 10.1090/S0002-9939-1969-0248122-5
- William Yu Sit, Differential algebraic subgroups of $\textrm {SL}(2)$ and strong normality in simple extensions, Amer. J. Math. 97 (1975), no. 3, 627–698. MR 396513, DOI 10.2307/2373770
- Michael F. Singer and Felix Ulmer, Galois groups of second and third order linear differential equations, J. Symbolic Comput. 16 (1993), no. 1, 9–36. MR 1237348, DOI 10.1006/jsco.1993.1032
- Michael F. Singer and Felix Ulmer, Liouvillian and algebraic solutions of second and third order linear differential equations, J. Symbolic Comput. 16 (1993), no. 1, 37–73. MR 1237349, DOI 10.1006/jsco.1993.1033
- Felix Ulmer, Irreducible linear differential equations of prime order, J. Symbolic Comput. 18 (1994), no. 4, 385–401. MR 1324498, DOI 10.1006/jsco.1994.1055
- Felix Ulmer and Jacques-Arthur Weil, Note on Kovacic’s algorithm, J. Symbolic Comput. 22 (1996), no. 2, 179–200. MR 1422145, DOI 10.1006/jsco.1996.0047
- Marius van der Put, Symbolic analysis of differential equations, Some tapas of computer algebra, Algorithms Comput. Math., vol. 4, Springer, Berlin, 1999, pp. 208–236. MR 1679926, DOI 10.1007/978-3-662-03891-8_{9}
- Marius van der Put and Michael F. Singer, Galois theory of linear differential equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 328, Springer-Verlag, Berlin, 2003. MR 1960772, DOI 10.1007/978-3-642-55750-7
- Alexey Zharkov, Coefficient fields of solutions in Kovacic’s algorithm, J. Symbolic Comput. 19 (1995), no. 5, 403–408. MR 1348780, DOI 10.1006/jsco.1995.1023
Bibliographic Information
- Thomas Dreyfus
- Affiliation: Université Paris Diderot, Institut de mathématiques de Jussieu, Topologie et géométrie algébriques, 4, place Jussieu, 75005 Paris, France
- MR Author ID: 1051219
- ORCID: 0000-0003-1459-8456
- Email: tdreyfus@math.jussieu.fr
- Received by editor(s): October 3, 2011
- Received by editor(s) in revised form: October 11, 2011, and April 12, 2012
- Published electronically: January 24, 2014
- Additional Notes: Work partially supported by NFS CCF-0952591 and ANR-06-JCJC-0028
- Communicated by: Sergei K. Suslov
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 142 (2014), 1193-1207
- MSC (2010): Primary 34M15, 12H20, 34M03
- DOI: https://doi.org/10.1090/S0002-9939-2014-11826-0
- MathSciNet review: 3162242