ON THE CATEGORY OF COFINITE MODULES WHICH IS ABELIAN

KAMAL BAHMANPOUR, REZA NAGHIPOUR, AND MONIREH SEDGHI

(Communicated by Irena Peeva)

Dedicated to Professor Robin Hartshorne

Abstract. Let R denote a commutative Noetherian (not necessarily local) ring and I an ideal of R of dimension one. The main purpose of this paper is to generalize, and to provide a short proof of, K. I. Kawasaki’s theorem that the category $\mathcal{M}(R, I)_{cof}$ of I-cofinite modules over a commutative Noetherian local ring R forms an Abelian subcategory of the category of all R-modules. Consequently, this assertion answers affirmatively the question raised by R. Hartshorne in his article Affine duality and cofiniteness [Invent. Math. 9 (1970), 145-164] for an ideal of dimension one in a commutative Noetherian ring R.

1. Introduction

Let R denote a commutative Noetherian ring, and let I be an ideal of R. In [4], Hartshorne defined an R-module L to be I-cofinite if $\text{Supp}(L) \subseteq V(I)$ and $\text{Ext}_R^i(R/I, L)$ is finitely generated module for all i. He posed the following question:

Does the category $\mathcal{M}(R, I)_{cof}$ of I-cofinite modules form an Abelian subcategory of the category of all R-modules? That is, if $f : M \to N$ is an R-module homomorphism of I-cofinite modules, are $\ker f$ and $\text{coker } f$ I-cofinite?

Hartshorne gave the following counterexample (see [3]): Let k be a field and let $R = k[[x, y, z, u]]/(xy - uz)$. Set $M = R/(xy - uv)R$ and $I = (x, u)R$. Then applying functor $H^0_I(-)$ to the exact sequence

$$0 \to R \xrightarrow{x y - u v} R \to M \to 0,$$

we obtain the exact sequence

$$\cdots \to H^2_I(R) \xrightarrow{f} H^2_I(R) \to H^2_I(M) \to 0.$$

Since $H^i_I(R) = 0$ for all $i \neq 2$, one can show that

$$\text{Ext}^i_R(R/I, H^2_I(R)) \cong \text{Ext}^{i+2}_R(R/I, R),$$

for all i. Thus, $H^2_I(R)$ is I-cofinite. However, $\text{coker } f = H^2_I(M)$ is not I-cofinite. On the positive side, Hartshorne proved that if I is a prime ideal of dimension one in a complete regular local ring R, then the answer to his question is yes. On the other hand, in [3], Delfino and Marley extended this result to arbitrary complete
local rings. Recently, Kawasaki [6] generalized Delfino and Marley’s result for an arbitrary ideal I of dimension one in a local ring R. Kawasaki’s proof relies on a spectral sequence, and several pages of his paper are devoted to a proof of that theorem. See also [7] and [8].

The main purpose of this paper is to generalize and to present a much shorter proof of Kawasaki’s theorem, using somewhat more elementary methods than those used by Kawasaki. More precisely, we shall show that:

Theorem 1.1. Let R be a Noetherian ring and I an ideal of R of dimension one. Let $\mathcal{M}(R, I)_{cof}$ denote the category of I-cofinite modules. Then $\mathcal{M}(R, I)_{cof}$ forms an Abelian subcategory of the category of all R-modules.

One of our tools for proving Theorem 1.1 is the following, which is a generalization of a result of Melkersson (cf. [11] Proposition 4.3]).

Proposition 1.2. Let I denote an ideal of a Noetherian ring R and let M be an R-module such that $\dim M \leq 1$ and $\operatorname{Supp}(M) \subseteq V(I)$. Then M is I-cofinite if and only if the R-modules $\operatorname{Hom}_R(R/I, M)$ and $\operatorname{Ext}_R^1(R/I, M)$ are finitely generated.

Throughout this paper, R will always be a commutative Noetherian ring with non-zero identity and I will be an ideal of R. For an Artinian R-module A, we denote by $\operatorname{Att}_R A$ the set of attached prime ideals of A. For each R-module L, we denote by $\operatorname{Assh}_R L$ the set $\{p \in \operatorname{Ass}_R L : \dim R/p = \dim L\}$. We shall use $\operatorname{Max} R$ to denote the set of all maximal ideals of R. Also, for any ideal a of R, we denote $\{p \in \operatorname{Spec} R : p \supseteq a\}$ by $V(a)$. Finally, for any ideal b of R, the radical of b, denoted by $\operatorname{Rad}(b)$, is defined to be the set $\{x \in R : x^n \in b \text{ for some } n \in \mathbb{N}\}$. For any unexplained notation and terminology we refer the reader to [2] and [9].

Recall that a module is called a minimax module when it has a finitely generated submodule, such that the quotient by it is an Artinian module [12].

2. The Results

Let us first recall the important concept of the arithmetic rank of an ideal. The arithmetic rank of an ideal b in a commutative Noetherian ring T, denoted by $\operatorname{ara}(b)$, is the least number of elements of T required to generate an ideal which has the same radical as b, i.e.,

$$\operatorname{ara}(b) = \min\{n \in \mathbb{N}_0 : \exists b_1, \ldots, b_n \in T \text{ with } \operatorname{Rad}(b_1, \ldots, b_n) = \operatorname{Rad}(b)\}.$$

Let M be a T-module. The arithmetic rank of an ideal b of T with respect to M, denoted by $\operatorname{ara}_M(b)$, is defined by the arithmetic rank of the ideal $b + \operatorname{Ann}_T M/ \operatorname{Ann}_T M$ in the ring $T/ \operatorname{Ann}_T M$.

The main point of this note is to generalize and to provide a short proof the main result of Kawasaki [6 Theorem 1] concerning a question raised by R. Hartshorne. The following proposition plays a key role in the proof of that theorem. Before we state Proposition 2.6, we recall some lemmas that we will use in the proof of this proposition.

Lemma 2.1. Let R be a Noetherian ring and I an ideal of R. Then, for any R-module T, the following conditions are equivalent:

(i) $\operatorname{Ext}_R^n(R/I, T)$ is finitely generated for all $n \geq 0$.

(ii) $\operatorname{Ext}_R^n(N, T)$ is finitely generated for all $n \geq 0$ and for each finitely generated R-module N for which $\operatorname{Supp} N \subseteq V(I)$.

Proof. See [5, Lemma 1].

Lemma 2.2. Let R be a Noetherian ring and I an ideal of R. Let $x \in I$ and M be an R-module such that $\text{Supp} \ M \subseteq V(I)$. If $(0 :_M x)$ and M/xM are I-cofinite, then M is also I-cofinite.

Proof. See [11, Corollary 3.4].

Lemma 2.3. Let R be a Noetherian ring and I an ideal of R. Let M be a minimax R-module such that $\text{Supp} \ M \subseteq V(I)$. Then M is I-cofinite if and only if $(0 :_M I)$ is finitely generated.

Proof. See [10, Proposition 4.3].

Lemma 2.4. Let (R, \mathfrak{m}) be a local (Noetherian) ring and let A be an Artinian R-module. Let I be an ideal of R such that the R-module $\text{Hom}_R(R/I, A)$ is finitely generated. Then $V(I) \cap \text{Att}_R A \subseteq V(\mathfrak{m})$.

Proof. See [1, Lemma 2.5].

Lemma 2.5. Let (R, \mathfrak{m}) and A be as in Lemma 2.4. Suppose that x is an element in \mathfrak{m} such that $V(Rx) \cap \text{Att}_R A \subseteq \{\mathfrak{m}\}$. Then the R-module A/xA has finite length.

Proof. See [1, Lemma 2.4].

Proposition 2.6. Let I be an ideal of a Noetherian ring R and M be an R-module such that $\dim M \leq 1$ and $\text{Supp} \ M \subseteq V(I)$. Then the following statements are equivalent:

(i) M is I-cofinite,

(ii) the R-modules $\text{Hom}_R(R/I, M)$ and $\text{Ext}^1_R(R/I, M)$ are finitely generated.

Proof. The conclusion (i) \implies (ii) is obviously true. In order to prove that (ii) \implies (i), since by assumption (ii) $\text{Hom}_R(R/I, M)$ is finitely generated, using Lemma 2.3 and [10, Theorem 1.3], we may assume $\dim M = 1$.

We now prove by induction on $t := \text{ara}_M(I) = \text{ara}(I + \text{Ann}_R M/\text{Ann}_R M)$ that M is I-cofinite. If $t = 0$, then it follows from definition that $I^n \subseteq \text{Ann}_R(M)$ for some positive integer n, and so $M = (0 :_M I^n)$. Therefore the assertion follows from Lemma 2.1. So assume that $t > 0$, and the result has been proved for all $i \leq t - 1$. Let

$$T := \{p \in \text{Supp} \ M \mid \dim R/p = 1\}.$$

It is easy to see that $T = \text{Assh}_RM$. As $\text{Ass}_R \text{Hom}_R(R/I, M) = V(I) \cap \text{Ass}_RM = \text{Ass}_RM$, it follows that the set Ass_RM is finite. Hence T is finite. Moreover, since for each $p \in T$ the R_p-module $\text{Hom}_{R_p}(R_p/I_Rp, M_p)$ is finitely generated, by [9, Ex. 7.7], and M_p is an IR_p-torsion R_p-module, with $\text{Supp} M_p \subseteq V(pR_p)$, it follows that the R_p-module $\text{Hom}_{R_p}(R_p/I_Rp, M_p)$ is Artinian. Consequently, according to Melkersson’s results [10, Theorem 1.3] and Lemma 2.3, M_p is an Artinian and IR_p-cofinite R_p-module. Let

$$T := \{p_1, \ldots, p_n\}.$$

By Lemma 2.4, we have

$$V(IR_{p_j}) \cap \text{Att}_{R_{p_j}}(M_{p_j}) \subseteq V(p_jR_{p_j}),$$

where $V(IR_{p_j})$ is the set of prime ideals of R containing (IR_{p_j}) and $\text{Att}_{R_{p_j}}(M_{p_j})$ is the set of associated primes of M_{p_j} in R_{p_j}.
for all \(j = 1, 2, \ldots, n \). Next, let
\[
\mathcal{V} := \bigcup_{j=1}^{n} \{ q \in \text{Spec } R \mid qR_{p_j} \subseteq \text{Att}_{R_{p_j}}(M_{p_j}) \}.
\]
Then it is easy to see that \(\mathcal{V} \cap V(I) \subseteq \mathcal{T} \).

On the other hand, since \(t = \text{ara}_M(I) \geq 1 \), there exist elements \(y_1, \ldots, y_t \in I \) such that
\[
\text{Rad}(I + \text{Ann}_R(M)/\text{Ann}_R(M)) = \text{Rad}((y_1, \ldots, y_t) + \text{Ann}_R(M)/\text{Ann}_R(M)).
\]

Now, as \(I \not\subseteq \bigcup_{q \in \mathcal{V} \setminus V(I)} q \), it follows that \((y_1, \ldots, y_t) + \text{Ann}_R(M) \not\subseteq \bigcup_{q \in \mathcal{V} \setminus V(I)} q \).

On the other hand, for each \(q \in \mathcal{V} \) we have
\[
qR_{p_j} \subseteq \text{Att}_{R_{p_j}}(M_{p_j}),
\]
for some integer \(1 \leq j \leq n \). Hence
\[
\text{Ann}_R(M)R_{p_j} \subseteq \text{Ann}_{R_{p_j}}(M_{p_j}) \subseteq qR_{p_j}.
\]
Since \(q \) is prime we obtain that \(\text{Ann}_R(M) \subseteq q \). Consequently, it follows from
\[
\text{Ann}_R(M) \subseteq \bigcap_{q \in \mathcal{V} \setminus V(I)} q
\]
that \((y_1, \ldots, y_t) \not\subseteq \bigcup_{q \in \mathcal{V} \setminus V(I)} q \). By [9, Ex. 16.8] there is \(a \in (y_2, \ldots, y_t) \) such that \(y_1 + a \not\subseteq \bigcup_{q \in \mathcal{V} \setminus V(I)} q \). Let \(x := y_1 + a \). Then \(x \in I \) and
\[
\text{Rad}(I + \text{Ann}_R(M)/\text{Ann}_R(M)) = \text{Rad}((x, y_2, \ldots, y_t) + \text{Ann}_R(M)/\text{Ann}_R(M)).
\]

Next, let \(N := (0 :_M x) \). Then, it is easy to see that
\[
\text{ara}_N(I) = \text{ara}(I + \text{Ann}_R(N)/\text{Ann}_R(N)) \leq t - 1
\]
(note that \(x \in \text{Ann}_R(N) \)), and hence
\[
\text{Rad}(I + \text{Ann}_R(N)/\text{Ann}_R(N)) = \text{Rad}((y_2, \ldots, y_t) + \text{Ann}_R(N)/\text{Ann}_R(N)).
\]
Now, the exact sequence
\[
0 \longrightarrow N \longrightarrow M \longrightarrow xM \longrightarrow 0
\]
induces an exact sequence
\[
0 \longrightarrow \text{Hom}_R(R/I, N) \longrightarrow \text{Hom}_R(R/I, M) \longrightarrow \text{Hom}_R(R/I, xM)
\]
\[(*) \quad \longrightarrow \text{Ext}^1_R(R/I, N) \longrightarrow \text{Ext}^1_R(R/I, M),
\]
which implies that the \(R \)-modules \(\text{Hom}_R(R/I, N) \) and \(\text{Ext}^1_R(R/I, N) \) are finitely generated. Consequently, by the inductive hypothesis, the \(R \)-module \(N \) is \(I \)-cofinite.

Moreover, the exact sequence
\[
0 \longrightarrow N \longrightarrow M \longrightarrow xM \longrightarrow 0
\]
induces an exact sequence
\[
\text{Ext}^1_R(R/I, M) \longrightarrow \text{Ext}^1_R(R/I, xM) \longrightarrow \text{Ext}^2_R(R/I, N),
\]
which implies that the \(R \)-module \(\text{Ext}^1_R(R/I, xM) \) is finitely generated.
Also, from the exact sequence
\[0 \rightarrow xM \rightarrow M \rightarrow M/xM \rightarrow 0 \]
we get the exact sequence
\[\text{Hom}_R(R/I, M) \rightarrow \text{Hom}_R(R/I, M/xM) \rightarrow \text{Ext}^1_R(R/I, xM), \]
which implies that the \(R \)-module \(\text{Hom}_R(R/I, M/xM) \) is finitely generated.

Now, from Lemma 2.5, it is easy to see that \((M/xM)_{p_j}\) has finite length for all \(j = 1, \ldots, n \). Therefore, there exists a finitely generated submodule \(L_j \) of \(M/xM \) such that
\[(M/xM)_{p_j} = (L_j)_{p_j}. \]
Let \(L := L_1 + \cdots + L_n \). Then \(L \) is a finitely generated submodule of \(M/xM \) such that
\[\text{Supp}(M/xM)/L \subseteq \text{Supp}(M) \setminus \{p_1, \ldots, p_n\} \subseteq \text{Max } R. \]
The sequence
\[0 \rightarrow L \rightarrow M/xM \rightarrow (M/xM)/L \rightarrow 0 \]
provides the exact sequence
\[\text{Hom}_R(R/I, M/xM) \rightarrow \text{Hom}_R(R/I, (M/xM)/L) \rightarrow \text{Ext}^1_R(R/I, L), \]
which implies that the \(R \)-module \(\text{Hom}_R(R/I, (M/xM)/L) \) is finitely generated. We now show that \(M/xM \) is a minimax \(R \)-module. To do this, since
\[\text{Supp}(M/xM)/L \subseteq \text{Max } R \]
and \((M/xM)/L\) is \(I \)-torsion, it follows from [10, Theorem 1.3] that the \(R \)-module \((M/xM)/L\) is Artinian. Hence \(M/xM \) is a minimax \(R \)-module. Now, as
\[\text{Hom}_R(R/I, M/xM) \]
is a finitely generated \(R \)-module, it follows from Melkersson’s theorem (see Lemma 2.3) that \(M/xM \) is \(I \)-cofinite. Also, since the \(R \)-modules \(N = (0 :_M x) \) and \(M/xM \) are \(I \)-cofinite, it follows from Lemma 2.2 that \(M \) is \(I \)-cofinite. This completes the inductive step. \(\square \)

We are now in a position to use the previous result to produce a proof of the main theorem, which is a generalization of the main result of [6, Theorem 1].

Theorem 2.7. Let \(I \) be an ideal of a Noetherian ring \(R \). Let \(\mathcal{C}^1(R, I)_{\text{cof}} \) denote the category of \(I \)-cofinite \(R \)-modules \(M \) with \(\dim M \leq 1 \). Then \(\mathcal{C}^1(R, I)_{\text{cof}} \) is an Abelian category.

Proof. Let \(M, N \in \mathcal{C}^1(R, I)_{\text{cof}} \) and let \(f : M \rightarrow N \) be an \(R \)-homomorphism. It is enough to show that the \(R \)-modules \(\ker f \) and \(\operatorname{coker} f \) are \(I \)-cofinite.

To this end, the exact sequence
\[0 \rightarrow \ker f \rightarrow M \rightarrow \operatorname{im} f \rightarrow 0 \]
induces an exact sequence
\[0 \rightarrow \text{Hom}_R(R/I, \ker f) \rightarrow \text{Hom}_R(R/I, M) \rightarrow \text{Hom}_R(R/I, \operatorname{im} f) \rightarrow \text{Ext}^1_R(R/I, \ker f) \rightarrow \text{Ext}^1_R(R/I, M) \]
that implies the \(R \)-modules \(\text{Hom}_R(R/I, \ker f) \) and \(\text{Ext}^1_R(R/I, \ker f) \) are finitely generated. Therefore it follows from Proposition 2.6 that \(\ker f \) is \(I \)-cofinite. Now, the assertion follows from the exact sequences

\[
0 \longrightarrow \ker f \longrightarrow M \longrightarrow \text{im} f \longrightarrow 0
\]

and

\[
0 \longrightarrow \text{im} f \longrightarrow N \longrightarrow \text{coker} f \longrightarrow 0.
\]

\(\square \)

As an immediate consequence of Theorem 2.7, we derive the following extension of Delfino-Marley’s result in [3] and Kawasaki’s result in [6] for an arbitrary Noetherian ring.

Corollary 2.8. Let \(I \) be an ideal of a commutative Noetherian ring \(R \) of dimension one. Then the category \(\mathcal{M}(R, I)_{\text{cof}} \) of \(I \)-cofinite modules forms an Abelian subcategory of the category of all \(R \)-modules.

Proof. As \(\text{Supp} M \subseteq \text{Supp} R/I \) for all \(M \in \mathcal{M}(R, I)_{\text{cof}}, \) and \(\dim R/I = 1, \) it follows that

\[
\dim M \leq 1.
\]

Now the assertion follows from Theorem 2.7. \(\square \)

Corollary 2.9. Let \(I \) be an ideal of a commutative Noetherian ring \(R \) of dimension one. Let \(\mathcal{M}(R, I)_{\text{cof}} \) denote the category of \(I \)-cofinite modules over \(R. \) Let

\[
X^\bullet : \cdots \longrightarrow X^i \xrightarrow{f^i} X^{i+1} \xrightarrow{f^{i+1}} X^{i+2} \longrightarrow \cdots
\]

be a complex such that \(X^i \in \mathcal{M}(R, I)_{\text{cof}} \) for all \(i \in \mathbb{Z}. \) Then the \(i \)th homology module \(H^i(X^\bullet) \) is in \(\mathcal{M}(R, I)_{\text{cof}}. \)

Proof. The assertion follows from Corollary 2.8. \(\square \)

Acknowledgments

The authors are deeply grateful to the referee for a careful reading of the paper and for valuable suggestions. Also, they would like to thank Professors Hossein Zakeri and Kamran Divaani-Aazar for their careful reading of the first draft and many helpful suggestions. Finally, the authors would like to thank the Azarbaijan Shahid Madani University for its financial support.

References

ON THE CATEGORY OF COFINITE MODULES WHICH IS ABELIAN

Department of Mathematics, Faculty of Mathematical Sciences, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran
E-mail address: bahmanpour.k@gmail.com

Department of Mathematics, University of Tabriz, Tabriz, Iran – and – School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5746, Tehran, Iran
E-mail address: naghipour@ipm.ir
E-mail address: naghipour@tabrizu.ac.ir

Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
E-mail address: sedghi@azaruniv.ac.ir
E-mail address: m.sedghi@tabrizu.ac.ir