A note on special values of $L$-functions
HTML articles powered by AMS MathViewer
- by Sanoli Gun, M. Ram Murty and Purusottam Rath
- Proc. Amer. Math. Soc. 142 (2014), 1147-1156
- DOI: https://doi.org/10.1090/S0002-9939-2014-11858-2
- Published electronically: January 30, 2014
- PDF | Request permission
Abstract:
In this paper, we link the nature of special values of certain Dirichlet $L$-functions to those of multiple gamma values.References
- V. S. Adamchik, The multiple gamma function and its application to computation of series, Ramanujan J. 9 (2005), no. 3, 271–288. MR 2173489, DOI 10.1007/s11139-005-1868-3
- Yves André, Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses [Panoramas and Syntheses], vol. 17, Société Mathématique de France, Paris, 2004 (French, with English and French summaries). MR 2115000
- E. W. Barnes, On the theory of the multiple gamma function, Trans. Cambridge Philos. Soc. 19 (1904), 374–425.
- Cristiana Bertolin, Périodes de 1-motifs et transcendance, J. Number Theory 97 (2002), no. 2, 204–221 (French, with English summary). MR 1942957, DOI 10.1016/S0022-314X(02)00002-1
- Daniel Bertrand and David Masser, Linear forms in elliptic integrals, Invent. Math. 58 (1980), no. 3, 283–288. MR 571576, DOI 10.1007/BF01390255
- Gregory V. Chudnovsky, Contributions to the theory of transcendental numbers, Mathematical Surveys and Monographs, vol. 19, American Mathematical Society, Providence, RI, 1984. MR 772027, DOI 10.1090/surv/019
- Pierre Deligne, James S. Milne, Arthur Ogus, and Kuang-yen Shih, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900, Springer-Verlag, Berlin-New York, 1982. MR 654325
- J. Dufresnoy and Ch. Pisot, Sur la relation fonctionnelle $f(x+1)-f(x)=\varphi (x)$, Bull. Soc. Math. Belg. 15 (1963), 259–270 (French). MR 161055
- William Duke and Özlem Imamoḡlu, Special values of multiple gamma functions, J. Théor. Nombres Bordeaux 18 (2006), no. 1, 113–123 (English, with English and French summaries). MR 2245878
- J. P. Keating and N. C. Snaith, Random matrix theory and $\zeta (1/2+it)$, Comm. Math. Phys. 214 (2000), no. 1, 57–89. MR 1794265, DOI 10.1007/s002200000261
- Serge Lang, Introduction to transcendental numbers, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. MR 0214547
- Brad A. Lutes and Matthew A. Papanikolas, Algebraic independence of values of Goss $L$-functions at $s=1$, J. Number Theory 133 (2013), no. 3, 1000–1011. MR 2997783, DOI 10.1016/j.jnt.2012.04.002
- David Masser, Elliptic functions and transcendence, Lecture Notes in Mathematics, Vol. 437, Springer-Verlag, Berlin-New York, 1975. MR 0379391
- Yu. V. Nesterenko, Modular functions and transcendence questions, Mat. Sb. 187 (1996), no. 9, 65–96 (Russian, with Russian summary); English transl., Sb. Math. 187 (1996), no. 9, 1319–1348. MR 1422383, DOI 10.1070/SM1996v187n09ABEH000158
- Introduction to algebraic independence theory, Lecture Notes in Mathematics, vol. 1752, Springer-Verlag, Berlin, 2001. With contributions from F. Amoroso, D. Bertrand, W. D. Brownawell, G. Diaz, M. Laurent, Yuri V. Nesterenko, K. Nishioka, Patrice Philippon, G. Rémond, D. Roy and M. Waldschmidt; Edited by Nesterenko and Philippon. MR 1837822, DOI 10.1007/b76882
- P. Philippon, Variétés abéliennes et indépendance algébrique. II. Un analogue abélien du théorème de Lindemann-Weierstraß, Invent. Math. 72 (1983), no. 3, 389–405 (French). MR 704398, DOI 10.1007/BF01398395
- T. Rivoal and W. Zudilin, Diophantine properties of numbers related to Catalan’s constant, Math. Ann. 326 (2003), no. 4, 705–721. MR 2003449, DOI 10.1007/s00208-003-0420-2
- Peter Sarnak, Determinants of Laplacians, Comm. Math. Phys. 110 (1987), no. 1, 113–120. MR 885573
- Takuro Shintani, A proof of the classical Kronecker limit formula, Tokyo J. Math. 3 (1980), no. 2, 191–199. MR 605088, DOI 10.3836/tjm/1270472992
- Ilan Vardi, Determinants of Laplacians and multiple gamma functions, SIAM J. Math. Anal. 19 (1988), no. 2, 493–507. MR 930041, DOI 10.1137/0519035
- Marie-France Vignéras, L’équation fonctionnelle de la fonction zêta de Selberg du groupe modulaire $\textrm {PSL}(2,\,\textbf {Z})$, Journées Arithmétiques de Luminy (Colloq. Internat. CNRS, Centre Univ. Luminy, Luminy, 1978) Astérisque, vol. 61, Soc. Math. France, Paris, 1979, pp. 235–249 (French). MR 556676
- G. Wüstholz, Über das Abelsche Analogon des Lindemannschen Satzes. I, Invent. Math. 72 (1983), no. 3, 363–388 (German). MR 704397, DOI 10.1007/BF01398393
Bibliographic Information
- Sanoli Gun
- Affiliation: The Institute of Mathematical Sciences, C.I.T Campus, Taramani, Chennai 600113, India
- Email: sanoli@imsc.res.in
- M. Ram Murty
- Affiliation: Department of Mathematics, Queen’s University, Jeffrey Hall, 99 University Avenue, Kingston, ON K7L3N6, Canada
- MR Author ID: 128555
- Email: murty@mast.queensu.ca
- Purusottam Rath
- Affiliation: Chennai Mathematical Institute, Plot No. H1, SIPCOT IT Park, Padur PO, Siruseri 603103, Tamilnadu, India
- Email: rath@cmi.ac.in
- Received by editor(s): June 27, 2011
- Received by editor(s) in revised form: July 4, 2011, and May 11, 2012
- Published electronically: January 30, 2014
- Communicated by: Matthew A. Papanikolas
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 142 (2014), 1147-1156
- MSC (2010): Primary 11M06, 11J89, 11J91, 33B15
- DOI: https://doi.org/10.1090/S0002-9939-2014-11858-2
- MathSciNet review: 3162237