On the Gorenstein and cohomological dimension of groups
HTML articles powered by AMS MathViewer
- by Olympia Talelli
- Proc. Amer. Math. Soc. 142 (2014), 1175-1180
- DOI: https://doi.org/10.1090/S0002-9939-2014-11883-1
- Published electronically: January 30, 2014
- PDF | Request permission
Abstract:
Here we relate the Gorenstein dimension of a group $G$, $\mathrm {Gcd}_{R}G$, over $\mathbb Z$ and $\mathbb Q$ to the cohomological dimension of $G$, $\mathrm {cd}_{R}G$, over $\mathbb Z$ and $\mathbb Q$, and show that if $G$ is in ${\scriptstyle \bf {LH}}\mathfrak F$, a large class of groups defined by Kropholler, then $\mathrm {cd}_{\mathbb Q}G=\mathrm {Gcd}_{\mathbb Q}G$ and if $G$ is torsion free, then $\mathrm {Gcd}_{\mathbb Z}G= \mathrm {cd}_{\mathbb Z}G$. We also show that for any group $G$, $\mathrm {Gcd}_{\mathbb Q}G\leq \mathrm {Gcd}_{\mathbb Z}G$.References
- Javad Asadollahi, Abdolnaser Bahlekeh, and Shokrollah Salarian, On the hierarchy of cohomological dimensions of groups, J. Pure Appl. Algebra 213 (2009), no. 9, 1795–1803. MR 2518178, DOI 10.1016/j.jpaa.2009.01.011
- Abdolnaser Bahlekeh, Fotini Dembegioti, and Olympia Talelli, Gorenstein dimension and proper actions, Bull. Lond. Math. Soc. 41 (2009), no. 5, 859–871. MR 2557467, DOI 10.1112/blms/bdp063
- Anneaux de Gorenstein, et torsion en algèbre commutative, École Normale Supérieure de Jeunes Filles, Secrétariat mathématique, Paris, 1967 (French). Séminaire d’Algèbre Commutative dirigé par Pierre Samuel, 1966/67; Texte rédigé, d’après des exposés de Maurice Auslander, Marguerite Mangeney, Christian Peskine et Lucien Szpiro. MR 0225844
- Mladen Bestvina, The virtual cohomological dimension of Coxeter groups, Geometric group theory, Vol. 1 (Sussex, 1991) London Math. Soc. Lecture Note Ser., vol. 181, Cambridge Univ. Press, Cambridge, 1993, pp. 19–23. MR 1238512, DOI 10.1017/CBO9780511661860.003
- Jonathan Cornick and Peter H. Kropholler, Homological finiteness conditions for modules over group algebras, J. London Math. Soc. (2) 58 (1998), no. 1, 49–62. MR 1666074, DOI 10.1112/S0024610798005729
- Ioannis Emmanouil and Olympia Talelli, On the flat length of injective modules, J. Lond. Math. Soc. (2) 84 (2011), no. 2, 408–432. MR 2835337, DOI 10.1112/jlms/jdr014
- Ioannis Emmanouil, On certain cohomological invariants of groups, Adv. Math. 225 (2010), no. 6, 3446–3462. MR 2729012, DOI 10.1016/j.aim.2010.06.007
- Edgar E. Enochs and Overtoun M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), no. 4, 611–633. MR 1363858, DOI 10.1007/BF02572634
- T. V. Gedrich and K. W. Gruenberg, Complete cohomological functors on groups, Topology Appl. 25 (1987), no. 2, 203–223. Singapore topology conference (Singapore, 1985). MR 884544, DOI 10.1016/0166-8641(87)90015-0
- Henrik Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), no. 1-3, 167–193. MR 2038564, DOI 10.1016/j.jpaa.2003.11.007
- Bruce M. Ikenaga, Homological dimension and Farrell cohomology, J. Algebra 87 (1984), no. 2, 422–457. MR 739945, DOI 10.1016/0021-8693(84)90148-0
- Peter H. Kropholler, On groups of type $(\textrm {FP})_\infty$, J. Pure Appl. Algebra 90 (1993), no. 1, 55–67. MR 1246274, DOI 10.1016/0022-4049(93)90136-H
- Nansen Petrosyan, Jumps in cohomology and free group actions, J. Pure Appl. Algebra 210 (2007), no. 3, 695–703. MR 2324601, DOI 10.1016/j.jpaa.2006.11.011
- Olympia Talelli, On groups of type $\Phi$, Arch. Math. (Basel) 89 (2007), no. 1, 24–32. MR 2322776, DOI 10.1007/s00013-006-1160-9
- Olympia Talelli, A characterization of cohomological dimension for a big class of groups, J. Algebra 326 (2011), 238–244. MR 2746064, DOI 10.1016/j.jalgebra.2010.01.021
Bibliographic Information
- Olympia Talelli
- Affiliation: Department of Mathematics, University of Athens, Panepistimiopolis, GR-157 84, Athens, Greece
- Email: otalelli@math.uoa.gr
- Received by editor(s): May 25, 2011
- Received by editor(s) in revised form: April 25, 2012, and May 21, 2012
- Published electronically: January 30, 2014
- Additional Notes: This research supported by a GSRT/Greece excellence grant, cofounded by the ESF/EV and Natural Resources.
- Communicated by: Birge Huisgen-Zimmermann
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 142 (2014), 1175-1180
- MSC (2010): Primary 20J05; Secondary 55R35
- DOI: https://doi.org/10.1090/S0002-9939-2014-11883-1
- MathSciNet review: 3162240