Absence of eigenvalues of non-selfadjoint Schrödinger operators on the boundary of their numerical range
HTML articles powered by AMS MathViewer
- by Marcel Hansmann
- Proc. Amer. Math. Soc. 142 (2014), 1321-1335
- DOI: https://doi.org/10.1090/S0002-9939-2014-11885-5
- Published electronically: January 29, 2014
- PDF | Request permission
Abstract:
We use a classical result of Hildebrandt to establish simple conditions for the absence of eigenvalues of non-selfadjoint discrete and continuous Schrödinger operators on the boundary of their numerical range.References
- A. A. Abramov, A. Aslanyan, and E. B. Davies, Bounds on complex eigenvalues and resonances, J. Phys. A 34 (2001), no. 1, 57–72. MR 1819914, DOI 10.1088/0305-4470/34/1/304
- W. O. Amrein, A.-M. Berthier, and V. Georgescu, $L^{p}$-inequalities for the Laplacian and unique continuation, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 3, vii, 153–168 (English, with French summary). MR 638622
- A. Borichev, L. Golinskii, and S. Kupin, A Blaschke-type condition and its application to complex Jacobi matrices, Bull. Lond. Math. Soc. 41 (2009), no. 1, 117–123. MR 2481997, DOI 10.1112/blms/bdn109
- David Damanik, Rowan Killip, and Barry Simon, Schrödinger operators with few bound states, Comm. Math. Phys. 258 (2005), no. 3, 741–750. MR 2172016, DOI 10.1007/s00220-005-1366-x
- E. Brian Davies, Linear operators and their spectra, Cambridge Studies in Advanced Mathematics, vol. 106, Cambridge University Press, Cambridge, 2007. MR 2359869, DOI 10.1017/CBO9780511618864
- Michael Demuth, Marcel Hansmann, and Guy Katriel, On the discrete spectrum of non-selfadjoint operators, J. Funct. Anal. 257 (2009), no. 9, 2742–2759. MR 2559715, DOI 10.1016/j.jfa.2009.07.018
- I. Egorova and L. Golinskii, On the location of the discrete spectrum for complex Jacobi matrices, Proc. Amer. Math. Soc. 133 (2005), no. 12, 3635–3641. MR 2163601, DOI 10.1090/S0002-9939-05-08181-5
- Paul Erdős and John C. Oxtoby, Partitions of the plane into sets having positive measure in every non-null measurable product set, Trans. Amer. Math. Soc. 79 (1955), 91–102. MR 72928, DOI 10.1090/S0002-9947-1955-0072928-3
- Rupert L. Frank, Eigenvalue bounds for Schrödinger operators with complex potentials, Bull. Lond. Math. Soc. 43 (2011), no. 4, 745–750. MR 2820160, DOI 10.1112/blms/bdr008
- Rupert L. Frank, Ari Laptev, Elliott H. Lieb, and Robert Seiringer, Lieb-Thirring inequalities for Schrödinger operators with complex-valued potentials, Lett. Math. Phys. 77 (2006), no. 3, 309–316. MR 2260376, DOI 10.1007/s11005-006-0095-1
- Rupert L. Frank, Ari Laptev, and Robert Seiringer, A sharp bound on eigenvalues of Schrödinger operators on the half-line with complex-valued potentials, Spectral theory and analysis, Oper. Theory Adv. Appl., vol. 214, Birkhäuser/Springer Basel AG, Basel, 2011, pp. 39–44. MR 2808462, DOI 10.1007/978-3-7643-9994-8_{3}
- Leonid Golinskii and Stanislav Kupin, Lieb-Thirring bounds for complex Jacobi matrices, Lett. Math. Phys. 82 (2007), no. 1, 79–90. MR 2367876, DOI 10.1007/s11005-007-0189-4
- Marcel Hansmann, An eigenvalue estimate and its application to non-selfadjoint Jacobi and Schrödinger operators, Lett. Math. Phys. 98 (2011), no. 1, 79–95. MR 2836430, DOI 10.1007/s11005-011-0494-9
- Marcel Hansmann and Guy Katriel, Inequalities for the eigenvalues of non-selfadjoint Jacobi operators, Complex Anal. Oper. Theory 5 (2011), no. 1, 197–218. MR 2773062, DOI 10.1007/s11785-009-0040-2
- Stefan Hildebrandt, Über den numerischen Wertebereich eines Operators, Math. Ann. 163 (1966), 230–247 (German). MR 200725, DOI 10.1007/BF02052287
- Lars Hörmander, The analysis of linear partial differential operators. I, Classics in Mathematics, Springer-Verlag, Berlin, 2003. Distribution theory and Fourier analysis; Reprint of the second (1990) edition [Springer, Berlin; MR1065993 (91m:35001a)]. MR 1996773, DOI 10.1007/978-3-642-61497-2
- David Jerison and Carlos E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math. (2) 121 (1985), no. 3, 463–494. With an appendix by E. M. Stein. MR 794370, DOI 10.2307/1971205
- Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452
- Ari Laptev and Oleg Safronov, Eigenvalue estimates for Schrödinger operators with complex potentials, Comm. Math. Phys. 292 (2009), no. 1, 29–54. MR 2540070, DOI 10.1007/s00220-009-0883-4
- V. G. Maz’ya and I. E. Verbitsky, Infinitesimal form boundedness and Trudinger’s subordination for the Schrödinger operator, Invent. Math. 162 (2005), no. 1, 81–136. MR 2198326, DOI 10.1007/s00222-005-0439-y
- Oleg Safronov, Estimates for eigenvalues of the Schrödinger operator with a complex potential, Bull. Lond. Math. Soc. 42 (2010), no. 3, 452–456. MR 2651940, DOI 10.1112/blms/bdq007
- Oleg Safronov, On a sum rule for Schrödinger operators with complex potentials, Proc. Amer. Math. Soc. 138 (2010), no. 6, 2107–2112. MR 2596049, DOI 10.1090/S0002-9939-10-10248-2
- Barry Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 3, 447–526. MR 670130, DOI 10.1090/S0273-0979-1982-15041-8
- Gerald Teschl, Jacobi operators and completely integrable nonlinear lattices, Mathematical Surveys and Monographs, vol. 72, American Mathematical Society, Providence, RI, 2000. MR 1711536, DOI 10.1090/surv/072
- Roger Webster, Convexity, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1994. MR 1443208
Bibliographic Information
- Marcel Hansmann
- Affiliation: Faculty of Mathematics, Chemnitz University of Technology, Chemnitz, Germany
- Email: marcel.hansmann@mathematik.tu-chemnitz.de
- Received by editor(s): August 5, 2011
- Received by editor(s) in revised form: May 16, 2012
- Published electronically: January 29, 2014
- Communicated by: Michael Hitrik
- © Copyright 2014 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 142 (2014), 1321-1335
- MSC (2010): Primary 47A75, 47A12, 35J10, 47B36
- DOI: https://doi.org/10.1090/S0002-9939-2014-11885-5
- MathSciNet review: 3162253