Kaplansky Theorem for completely regular spaces
HTML articles powered by AMS MathViewer
- by Lei Li and Ngai-Ching Wong
- Proc. Amer. Math. Soc. 142 (2014), 1381-1389
- DOI: https://doi.org/10.1090/S0002-9939-2014-11889-2
- Published electronically: January 30, 2014
- PDF | Request permission
Abstract:
Let $X, Y$ be realcompact spaces or completely regular spaces consisting of $G_\delta$-points. Let $\phi$ be a linear bijective map from $C(X)$ (resp. $C^b(X)$) onto $C(Y)$ (resp. $C^b(Y)$). We show that if $\phi$ preserves nonvanishing functions, that is, \[ f(x)\neq 0,\forall x\in X, \quad \Longleftrightarrow \quad \phi (f)(y)\neq 0, \forall y\in Y, \] then $\phi$ is a weighted composition operator \[ \phi (f)=\phi (1)\cdot f\circ \tau , \] arising from a homeomorphism $\tau$ from $Y$ onto $X$. This result is applied also to other nice function spaces, e.g., uniformly or Lipschitz continuous functions on metric spaces.References
- Jesús Araujo, Separating maps and linear isometries between some spaces of continuous functions, J. Math. Anal. Appl. 226 (1998), no. 1, 23–39. MR 1646465, DOI 10.1006/jmaa.1998.6031
- Jesús Araujo, Realcompactness and Banach-Stone theorems, Bull. Belg. Math. Soc. Simon Stevin 11 (2004), no. 2, 247–258. MR 2080425
- Jesús Araujo and Luis Dubarbie, Biseparating maps between Lipschitz function spaces, J. Math. Anal. Appl. 357 (2009), no. 1, 191–200. MR 2526819, DOI 10.1016/j.jmaa.2009.03.065
- Bernard Aupetit, A primer on spectral theory, Universitext, Springer-Verlag, New York, 1991. MR 1083349, DOI 10.1007/978-1-4612-3048-9
- Bernard Aupetit, Spectrum-preserving linear mappings between Banach algebras or Jordan-Banach algebras, J. London Math. Soc. (2) 62 (2000), no. 3, 917–924. MR 1794294, DOI 10.1112/S0024610700001514
- Luis Dubarbie, Maps preserving common zeros between subspaces of vector-valued continuous functions, Positivity 14 (2010), no. 4, 695–703. MR 2741327, DOI 10.1007/s11117-010-0046-z
- M. Isabel Garrido and Jesús A. Jaramillo, A Banach-Stone theorem for uniformly continuous functions, Monatsh. Math. 131 (2000), no. 3, 189–192. MR 1801746, DOI 10.1007/s006050070008
- M. I. Garrido and J. A. Jaramillo, Homomorphisms on function lattices, Monatsh. Math. 141 (2004), no. 2, 127–146. MR 2037989, DOI 10.1007/s00605-002-0011-4
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199
- Andrew M. Gleason, A characterization of maximal ideals, J. Analyse Math. 19 (1967), 171–172. MR 213878, DOI 10.1007/BF02788714
- Krzysztof Jarosz, Automatic continuity of separating linear isomorphisms, Canad. Math. Bull. 33 (1990), no. 2, 139–144. MR 1060366, DOI 10.4153/CMB-1990-024-2
- Jyh-Shyang Jeang and Ngai-Ching Wong, Weighted composition operators of $C_0(X)$’s, J. Math. Anal. Appl. 201 (1996), no. 3, 981–993. MR 1400575, DOI 10.1006/jmaa.1996.0296
- J.-P. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339–343. MR 226408, DOI 10.4064/sm-29-3-339-343
- Irving Kaplansky, Lattices of continuous functions, Bull. Amer. Math. Soc. 53 (1947), 617–623. MR 20715, DOI 10.1090/S0002-9904-1947-08856-X
- Irving Kaplansky, Lattices of continuous functions. II, Amer. J. Math. 70 (1948), 626–634. MR 26240, DOI 10.2307/2372202
- Miguel Lacruz and José G. Llavona, Composition operators between algebras of uniformly continuous functions, Arch. Math. (Basel) 69 (1997), no. 1, 52–56. MR 1452159, DOI 10.1007/s000130050092
- Denny H. Leung and Wee-Kee Tang, Banach-Stone theorems for maps preserving common zeros, Positivity 14 (2010), no. 1, 17–42. MR 2596461, DOI 10.1007/s11117-008-0002-3
- Maurice D. Weir, Hewitt-Nachbin spaces, North-Holland Mathematics Studies, No. 17, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. MR 0514909
Bibliographic Information
- Lei Li
- Affiliation: School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, People’s Republic of China
- Email: leilee@nankai.edu.cn
- Ngai-Ching Wong
- Affiliation: Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Email: wong@math.nsysu.edu.tw
- Received by editor(s): October 4, 2011
- Received by editor(s) in revised form: May 25, 2012
- Published electronically: January 30, 2014
- Additional Notes: This work was supported by The National Natural Science Foundation of China (grants 11071129, 11301285) and Taiwan NSC (grants 098-2811-M-110-039, 99-2115-M-110-007-MY3).
- Communicated by: Thomas Schlumprecht
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 142 (2014), 1381-1389
- MSC (2000): Primary 46E40, 54D60; Secondary 46B42, 47B65
- DOI: https://doi.org/10.1090/S0002-9939-2014-11889-2
- MathSciNet review: 3162258