Automorphisms of affine smooth varieties
HTML articles powered by AMS MathViewer
- by Zbigniew Jelonek and Tomasz Lenarcik
- Proc. Amer. Math. Soc. 142 (2014), 1157-1163
- DOI: https://doi.org/10.1090/S0002-9939-2014-12033-8
- Published electronically: January 30, 2014
- PDF | Request permission
Abstract:
Let $k$ be an algebraically closed field. If $X$ is a smooth projective variety over $k$ and $H\subset X$ is a very ample hypersurface without ruled components, then the group $\mathrm {Aut}(X\setminus H)$ is finite and equal to $\mathrm {Stab}_X(H)=\{ \phi \in \mathrm {Aut}(X): \phi (H)=H\}.$References
- Shreeram Abhyankar, On the valuations centered in a local domain, Amer. J. Math. 78 (1956), 321–348. MR 82477, DOI 10.2307/2372519
- A. Białynicki-Birula, On fixed point schemes of actions of multiplicative and additive groups, Topology 12 (1973), 99–103. MR 313261, DOI 10.1016/0040-9383(73)90024-4
- Armand Borel, Linear algebraic groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes taken by Hyman Bass. MR 0251042
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Shigeru Iitaka, Algebraic geometry, North-Holland Mathematical Library, vol. 24, Springer-Verlag, New York-Berlin, 1982. An introduction to birational geometry of algebraic varieties. MR 637060
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180, DOI 10.1007/978-3-662-03276-3
- Zbigniew Jelonek, Affine smooth varieties with finite group of automorphisms, Math. Z. 216 (1994), no. 4, 575–591. MR 1288046, DOI 10.1007/BF02572340
- Zbigniew Jelonek, Irreducible identity sets for polynomial automorphisms, Math. Z. 212 (1993), no. 4, 601–617. MR 1214049, DOI 10.1007/BF02571679
- A. V. Pukhlikov, Birationally rigid Fano hypersurfaces, Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002), no. 6, 159–186 (Russian, with Russian summary); English transl., Izv. Math. 66 (2002), no. 6, 1243–1269. MR 1970356, DOI 10.1070/IM2002v066n06ABEH000413
- Aleksandr V. Pukhlikov, Birational automorphisms of higher-dimensional algebraic varieties, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), 1998, pp. 97–107. MR 1648060
- Maxwell Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math. 78 (1956), 401–443. MR 82183, DOI 10.2307/2372523
- Burt Totaro, The automorphism group of an affine quadric, Math. Proc. Cambridge Philos. Soc. 143 (2007), no. 1, 1–8. MR 2340971, DOI 10.1017/S0305004107000357
Bibliographic Information
- Zbigniew Jelonek
- Affiliation: Instytut Matematyczny PAN, ul. Śniadeckich 8, 00-956 Warszawa, Poland
- Email: najelone@cyf-kr.edu.pl
- Tomasz Lenarcik
- Affiliation: Faculty of Mathematics and Computer Science, Jagiellonian Univeristy, ul. prof. Stanisława Łojasiewicza 6, 30-348 Kraków, Poland
- Email: Tomasz.Lenarcik@im.uj.edu.pl
- Received by editor(s): November 2, 2011
- Received by editor(s) in revised form: May 11, 2012
- Published electronically: January 30, 2014
- Additional Notes: The first author acknowledges support of the Polish Ministry of Science and Higher Education, grant MNiSW N N201 420939, 2010–2013.
- Communicated by: Harm Derksen
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 142 (2014), 1157-1163
- MSC (2010): Primary 13C10, 14J70, 14R99
- DOI: https://doi.org/10.1090/S0002-9939-2014-12033-8
- MathSciNet review: 3162238