Gevrey hypoellipticity for sums of squares with a non-homogeneous degeneracy
HTML articles powered by AMS MathViewer
- by Antonio Bove and David S. Tartakoff
- Proc. Amer. Math. Soc. 142 (2014), 1315-1320
- DOI: https://doi.org/10.1090/S0002-9939-2014-12247-7
- Published electronically: January 29, 2014
- PDF | Request permission
Abstract:
In this paper we consider sums of squares of vector fields in $\mathbb {R}^2$ satisfying Hörmander’s condition and with polynomial, but non-(quasi-)homoge- neous, coefficients. We obtain a Gevrey hypoellipticity index which we believe to be sharp. The general operator we consider is \[ P=X^2+Y^2+\sum _{j=1}^{L}Z_j^2, \] with \[ X=D_x, \quad Y= a_{0}(x, y) x^{q-1}{D_y}, \quad Z_j= a_{j}(x, y) x^{p_j-1}y^{k_j} D_y, \] with $a_{j}(0, 0) \neq 0$, $j = 0, 1, \ldots , L$ and $q>p_j, \{k_j\}$ arbitrary. The theorem we prove is that $P$ is Gevrey-s hypoelliptic for $s\geq \frac {1}{1-T}, T = \max _j \frac {q-p_j}{q k_j}.$References
- Antonio Bove, Marco Mughetti, and David S. Tartakoff, Hypoellipticity and nonhypoellipticity for sums of squares of complex vector fields, Anal. PDE 6 (2013), no. 2, 371–445. MR 3071394, DOI 10.2140/apde.2013.6.371
- Antonio Bove and David Tartakoff, Optimal non-isotropic Gevrey exponents for sums of squares of vector fields, Comm. Partial Differential Equations 22 (1997), no. 7-8, 1263–1282. MR 1466316, DOI 10.1080/03605309708821300
- Antonio Bove and François Treves, On the Gevrey hypo-ellipticity of sums of squares of vector fields, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 5, 1443–1475, xv, xxi (English, with English and French summaries). MR 2127854
- Paulo D. Cordaro and Nicholas Hanges, A new proof of Okaji’s theorem for a class of sum of squares operators, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 2, 595–619 (English, with English and French summaries). MR 2521430
- Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 222474, DOI 10.1007/BF02392081
- Guy Métivier, Une classe d’opérateurs non hypoelliptiques analytiques, Indiana Univ. Math. J. 29 (1980), no. 6, 823–860 (French). MR 589650, DOI 10.1512/iumj.1980.29.29059
- Guy Métivier, Non-hypoellipticité analytique pour $D^{2}_{x}+(x^{2}+y^{2})D^{2}_{y}$, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 7, 401–404 (French, with English summary). MR 609762
- Takashi Ōkaji, Analytic hypoellipticity for operators with symplectic characteristics, J. Math. Kyoto Univ. 25 (1985), no. 3, 489–514. MR 807494, DOI 10.1215/kjm/1250521068
- David S. Tartakoff, Local analytic hypoellipticity for $\square _{b}$ on nondegenerate Cauchy-Riemann manifolds, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 7, 3027–3028. MR 499657, DOI 10.1073/pnas.75.7.3027
- David S. Tartakoff, The local real analyticity of solutions to $\square _{b}$ and the $\bar \partial$-Neumann problem, Acta Math. 145 (1980), no. 3-4, 177–204. MR 590289, DOI 10.1007/BF02414189
- François Treves, Symplectic geometry and analytic hypo-ellipticity, Differential equations: La Pietra 1996 (Florence), Proc. Sympos. Pure Math., vol. 65, Amer. Math. Soc., Providence, RI, 1999, pp. 201–219. MR 1662756, DOI 10.1090/pspum/065/1662756
Bibliographic Information
- Antonio Bove
- Affiliation: Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5, Bologna, Italy
- Email: bove@bo.infn.it
- David S. Tartakoff
- Affiliation: Department of Mathematics, University of Illinois at Chicago, m/c 249, 851 S. Morgan Street, Chicago, Illinois 60607
- Address at time of publication: 1216 N. Kenilworth Avenue, Oak Park, Illinois 60302
- Email: dst@uic.edu
- Received by editor(s): May 15, 2012
- Published electronically: January 29, 2014
- Communicated by: James E. Colliander
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 142 (2014), 1315-1320
- MSC (2010): Primary 35H20; Secondary 35H10
- DOI: https://doi.org/10.1090/S0002-9939-2014-12247-7
- MathSciNet review: 3162252