On the differential simplicity of affine rings
HTML articles powered by AMS MathViewer
- by S. C. Coutinho and D. Levcovitz
- Proc. Amer. Math. Soc. 142 (2014), 1701-1704
- DOI: https://doi.org/10.1090/S0002-9939-2014-11652-2
- Published electronically: February 17, 2014
- PDF | Request permission
Abstract:
We prove that every complex regular affine ring is differentially simple relative to a set with only two derivations.References
- J. Archer, Derivations on commutative rings and projective modules over skew polynomial rings, unpublished, 1981, Thesis (Ph.D.)–Leeds University.
- Richard E. Block, Differentiably simple algebras, Bull. Amer. Math. Soc. 74 (1968), 1086–1090. MR 231867, DOI 10.1090/S0002-9904-1968-12056-7
- Paulo Brumatti, Yves Lequain, and Daniel Levcovitz, Differential simplicity in polynomial rings and algebraic independence of power series, J. London Math. Soc. (2) 68 (2003), no. 3, 615–630. MR 2009440, DOI 10.1112/S0024610703004708
- S. C. Coutinho, $d$-simple rings and simple ${\scr D}$-modules, Math. Proc. Cambridge Philos. Soc. 125 (1999), no. 3, 405–415. MR 1656789, DOI 10.1017/S0305004198002965
- S. C. Coutinho, On the differential simplicity of polynomial rings, J. Algebra 264 (2003), no. 2, 442–468. MR 1981415, DOI 10.1016/S0021-8693(03)00099-1
- S. C. Coutinho, Nonholonomic simple $\scr D$-modules from simple derivations, Glasg. Math. J. 49 (2007), no. 1, 11–21. MR 2337862, DOI 10.1017/S0017089507003370
- S. C. Coutinho and J. V. Pereira, On the density of algebraic foliations without algebraic invariant sets, J. Reine Angew. Math. 594 (2006), 117–135. MR 2248154, DOI 10.1515/CRELLE.2006.037
- Ada Maria De S. Doering, Yves Lequain, and Cydara Ripoll, Differential simplicity and cyclic maximal ideals of the Weyl algebra $A_2(K)$, Glasg. Math. J. 48 (2006), no. 2, 269–274. MR 2256977, DOI 10.1017/S0017089506003053
- Laurence R. Harper Jr., On differentiably simple algebras, Trans. Amer. Math. Soc. 100 (1961), 63–72. MR 130250, DOI 10.1090/S0002-9947-1961-0130250-3
- R. Hart, Derivations on regular local rings of finitely generated type, J. London Math. Soc. (2) 10 (1975), 292–294. MR 369369, DOI 10.1112/jlms/s2-10.3.292
- Shigeru Iitaka, Algebraic geometry, North-Holland Mathematical Library, vol. 24, Springer-Verlag, New York-Berlin, 1982. An introduction to birational geometry of algebraic varieties. MR 637060
- Yves Lequain, Daniel Levcovitz, and José Carlos de Souza Junior, $D$-simple rings and principal maximal ideals of the Weyl algebra, Glasg. Math. J. 47 (2005), no. 2, 269–285. MR 2203494, DOI 10.1017/S001708950500248X
- Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné; Oxford Science Publications. MR 1917232
- Andrzej Maciejewski, Jean Moulin-Ollagnier, and Andrzej Nowicki, Simple quadratic derivations in two variables, Comm. Algebra 29 (2001), no. 11, 5095–5113. MR 1856933, DOI 10.1081/AGB-100106804
- A. Seidenberg, Differential ideals in rings of finitely generated type, Amer. J. Math. 89 (1967), 22–42. MR 212027, DOI 10.2307/2373093
Bibliographic Information
- S. C. Coutinho
- Affiliation: Departamento de Ciência da Computação, Instituto de Matemática, Universidade Federal do Rio de Janeiro, P.O. Box 68530, 21945-970 Rio de Janeiro, RJ, Brazil
- Email: collier@dcc.ufrj.br
- D. Levcovitz
- Affiliation: Departamento de Matemática, USP-S. Carlos, 13560-970, São Carlos, SP, Brazil
- Email: lev@icmc.usp.br
- Received by editor(s): December 12, 2011
- Received by editor(s) in revised form: June 21, 2012
- Published electronically: February 17, 2014
- Additional Notes: The work of the first author was partially supported by a grant from CNPq.
- Communicated by: Irena Peeva
- © Copyright 2014 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 142 (2014), 1701-1704
- MSC (2010): Primary 37F75, 13N15; Secondary 37J30, 32C38, 32S65
- DOI: https://doi.org/10.1090/S0002-9939-2014-11652-2
- MathSciNet review: 3168476