A twisted quadratic moment for Dirichlet $L$-functions
HTML articles powered by AMS MathViewer
- by Stéphane R. Louboutin
- Proc. Amer. Math. Soc. 142 (2014), 1539-1544
- DOI: https://doi.org/10.1090/S0002-9939-2014-11721-7
- Published electronically: February 12, 2014
- PDF | Request permission
Abstract:
Given $c$, a positive integer, we give an explicit formula for the quadratic moments \[ \sum _{\chi \in X_f^-}\chi (c)\vert L(1,\chi )\vert ^2,\] where $X_f^-$ is the set of the odd Dirichlet characters mod $f$ with $f>2$.References
- Tom M. Apostol, Modular functions and Dirichlet series in number theory, 2nd ed., Graduate Texts in Mathematics, vol. 41, Springer-Verlag, New York, 1990. MR 1027834, DOI 10.1007/978-1-4612-0999-7
- Abdelmejid Bayad and Abdelaziz Raouj, Mean values of $L$-functions and Dedekind sums, J. Number Theory 132 (2012), no. 8, 1645–1652. MR 2922335, DOI 10.1016/j.jnt.2012.01.014
- Stéphane Louboutin, Quelques formules exactes pour des moyennes de fonctions $L$ de Dirichlet, Canad. Math. Bull. 36 (1993), no. 2, 190–196 (French, with French summary). MR 1222534, DOI 10.4153/CMB-1993-028-8
- Stéphane R. Louboutin, Mean values of $L$-functions and relative class numbers of cyclotomic fields, Publ. Math. Debrecen 78 (2011), no. 3-4, 647–658. MR 2867207, DOI 10.5486/PMD.2011.4882
- Huaning Liu and Wenpeng Zhang, On the mean value of $L(m,\chi )L(n,\overline \chi )$ at positive integers $m,n\geq 1$, Acta Arith. 122 (2006), no. 1, 51–56. MR 2217323, DOI 10.4064/aa122-1-5
- Herbert Walum, An exact formula for an average of $L$-series, Illinois J. Math. 26 (1982), no. 1, 1–3. MR 638548
- Zhaoxia Wu and Wenpeng Zhang, On the mean values of $L(1,\chi )$, Bull. Korean Math. Soc. 49 (2012), no. 6, 1303–1310. MR 3002688, DOI 10.4134/BKMS.2012.49.6.1303
Bibliographic Information
- Stéphane R. Louboutin
- Affiliation: Aix-Marseille Université, Institut de Mathématiques de Luminy, FRE 3529, Campus de Luminy, Case 907, 13288 Marseille Cedex 9, France
- Email: stephane.louboutin@univ-amu.fr
- Received by editor(s): January 27, 2012
- Received by editor(s) in revised form: February 17, 2012, and June 12, 2012
- Published electronically: February 12, 2014
- Communicated by: Kathrin Bringmann
- © Copyright 2014 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 142 (2014), 1539-1544
- MSC (2010): Primary 11M20
- DOI: https://doi.org/10.1090/S0002-9939-2014-11721-7
- MathSciNet review: 3168461