THE FLAG f-VECTORS OF GORENSTEIN* ORDER COMPLEXES OF DIMENSION 3

SATOSHI MURAI AND ERAN NEVO

(Communicated by Jim Haglund)

Abstract. We characterize the cd-indices of Gorenstein* posets of rank 5, equivalently the flag f-vectors of order complexes triangulating rational homology 3-spheres, and show they are also the characterization of the flag f-vectors of the subfamily of regular CW-complexes homeomorphic to the 3-sphere. As a corollary, we characterize the f-vectors of Gorenstein* order complexes in dimensions 3 and 4. This characterization gives rise to a speculated intimate connection between the f-vectors of flag homology spheres and the f-vectors of Gorenstein* order complexes.

1. Introduction

The flag f-vector is a basic and important invariant of graded posets, counting chains. For a Gorenstein* poset P, e.g. for P the face poset of a (finite regular) CW-sphere, its flag f-vector is efficiently encoded by its cd-index [3] (based on [2]) whose integer coefficients turn out to be non-negative [6,10]. These conditions describe all the linear inequalities satisfied by the flag f-vector of such posets. Further restrictions on the cd-index of Gorenstein* posets were recently obtained in [7]; however, a full characterization is not even conjectured yet. In this paper we make a first step in this direction by characterizing the cd-indices of Gorenstein* posets of rank 5, which is the first non-trivial case.

We first recall the definition of the cd-index. Let P be a graded poset of rank $n + 1$ with the minimal element 0 and the maximal element 1. The order complex $O(P)$ of P (or of $P - \{0, 1\}$) is the (abstract) simplicial complex whose faces are the chains of $P - \{0, 1\}$. Thus

$$O(P) = \{\{\sigma_1, \sigma_2, \ldots, \sigma_k\} \subseteq P - \{0, 1\} : \sigma_1 < \sigma_2 < \cdots < \sigma_k\}.$$

Let $r : P \to \mathbb{Z}_{\geq 0}$ denote the rank function of P. For $S \subseteq [n] = \{1, 2, \ldots, n\}$, an element $\{\sigma_1, \ldots, \sigma_k\} \in O(P)$ with $\{r(\sigma_1), \ldots, r(\sigma_k)\} = S$ is called an S-flag of P. Let $f_S(P)$ be the number of S-flags of P. Define $h_S(P)$ by

$$h_S(P) = \sum_{T \subseteq S} (-1)^{|S| - |T|} f_T(P),$$

Received by the editors September 30, 2011 and, in revised form, June 12, 2012.

2010 Mathematics Subject Classification. Primary 05E45; Secondary 13F55, 06Axx.

The research of the first author was partially supported by KAKENHI 22740018.

The research of the second author was partially supported by Marie Curie grant IRG-270923 and by an ISF grant.

©2014 American Mathematical Society

1527
where \(|X|\) denotes the cardinality of a finite set \(X\). The vectors \((f_S(P) : S \subseteq [n])\) and \((h_S(P) : S \subseteq [n])\) are called the flag \(f\)-vector and flag \(h\)-vector of \(P\) (or \(O(P)\)) respectively. It is convenient to represent flag \(h\)-vectors as coefficients of non-commutative polynomials. For \(S \subseteq [n]\), we define a non-commutative monomial \(u_S = u_1u_2 \cdots u_n\) in variables \(a\) and \(b\) by \(u_i = a\) if \(i \not\in S\) and by \(u_i = b\) if \(i \in S\) and define

\[
\Psi_P(a, b) = \sum_{S \subseteq [n]} h_S(P)u_S.
\]

We say that \(P\) is Gorenstein* if the simplicial complex \(O(P)\) is Gorenstein* \([11\text{ p. 67}]\). A typical example of a Gorenstein* poset comes from CW-spheres, namely, a regular CW-complex which is homeomorphic to a sphere. Indeed, if \(P\) is the face poset of a CW-sphere, then \(P \cup \{0, 1\}\) is a Gorenstein* poset. It is known that if \(P\) is Gorenstein*, then \(\Psi_P(a, b)\) can be written as a polynomial \(\Phi_P(c, d)\) in \(c = a + b\) and \(d = ab + ba\) \([8]\), and this non-commutative polynomial \(\Phi_P(c, d)\) is called the \(cd\)-index of \(P\).

It is known that the coefficients of \(\Phi_P(c, d)\) are non-negative integers \([6, 10]\) and the coefficient of \(c^n\) in \(\Phi_P(c, d)\) is 1. The main result of this paper is the next result, which characterizes all possible \(cd\)-indices of Gorenstein* posets of rank 5.

Theorem 1.1. The \(cd\)-polynomial \(c^4 + \alpha_1 dc^2 + \alpha_2 cdc + \alpha_3 c^2d + \alpha_{13} d^2 \in \mathbb{Z}_{\geq 0}\langle c, d \rangle\) is the \(cd\)-index of a Gorenstein* poset of rank 5 if and only if one of the following conditions holds:

1. \(\alpha_2 = 0\) and \(\alpha_{13} = \alpha_1\alpha_3\).
2. \(\alpha_2 = 1\) and there are non-negative integers \(b_1, b_2, b_3, c_1, c_2, c_3\) such that \(\alpha_1 = b_1 + b_2 + b_3, \alpha_3 = c_1 + c_2 + c_3\) and \(\alpha_{13} = \alpha_1\alpha_3 - (b_1c_1 + b_2c_2 + b_3c_3)\).
3. \(\alpha_2 \geq 2\) and \(\alpha_{13} \leq \alpha_1\alpha_3\).

Note that, since knowing the \(cd\)-index of \(P\) is equivalent to knowing the flag \(f\)-vector of \(O(P)\), Theorem 1.1 characterizes the flag \(f\)-vectors of Gorenstein* order complexes of dimension 3.

Recall that for a Gorenstein* poset \(P\) of rank \(n + 1\), the vector \((h_0, h_1, \ldots, h_n)\), where \(h_i = \sum_{S \subseteq [n], |S| = i} h_S(P)\), is the usual \(h\)-vector of \(O(P)\). Thus, as an immediate corollary of Theorem 1.1 we obtain a characterization of the \(f\)-vectors of Gorenstein* order complexes of dimension 3. We extend this latter result to dimension 4 as well.

The numerical conditions are conveniently given in terms of \(d\)-vectors of Gorenstein* posets. For a Gorenstein* poset \(P\) of rank \(n + 1\), we define its \(d\)-vector \(d(P) = (\delta_0, \delta_1, \ldots, \delta_{\lfloor \frac{n}{2} \rfloor})\) by

\[
\Phi_P(1, d) = \delta_0 + \delta_1d + \cdots + \delta_{\lfloor \frac{n}{2} \rfloor}d^{\lfloor \frac{n}{2} \rfloor},
\]

where \(\lfloor x \rfloor\) is the integer part of \(x\). Thus \(\delta_0, \delta_1, \ldots, \delta_{\lfloor \frac{n}{2} \rfloor}\) are the coefficients of the polynomial which is obtained from the \(cd\)-index of \(P\) by substituting \(c = 1\). Note that by the definition, \(d(P)\) is a non-negative vector with \(\delta_0 = 1\). Since the \(d\)-vector of \(P\) and the \(h\)-vector \(h = (h_0, h_1, \ldots, h_n)\) of \(O(P)\) are related by \(\sum_{i=0}^{n} h_ix^i = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} 2^i\delta_i x^i(1 + x)^{n-2i}\) (cf. \([7\text{ Section 4}]\)), knowing the \(d\)-vector of \(P\) is equivalent to knowing the \(h\)-vector of \(O(P)\), equivalently the \(f\)-vector of \(O(P)\).
Theorem 1.2. Let \((1, x, y) \in \mathbb{Z}_3^3\).

(a) The vector \((1, x, y)\) is the \(d\)-vector of a Gorenstein* poset of rank 5 if and only if it satisfies \(y \leq \frac{(x-1)^2}{4}\) or there are non-negative integers \(a\) and \(b\) such that \(x = a + b\) and \(y = ab\).

(b) The vector \((1, x, y)\) is the \(d\)-vector of a Gorenstein* poset of rank 6 if and only if it satisfies \(y \leq \frac{x^2}{4}\).

We notice that the vectors in part (b) are exactly the \(\gamma\)-vectors of flag homology 4-spheres (details will be given in Section 5) and that the vectors in part (a) are conjectured in [5] to be exactly the \(\gamma\)-vectors of flag homology 3-spheres. This gives rise to Question 5.3 about an interesting relation between \(f\)-vectors of flag homology spheres and those of Gorenstein* order complexes.

Outline of the paper: In Section 2 we describe a poset construction which we call unzipping. Unzipping is in a certain sense an inverse of zipping [9] and will be used to prove sufficiency in Theorems 1.1 and 1.2. Theorem 1.1 is proved in Section 3; \(d\)-vectors are discussed in Section 4, where Theorem 1.2 is proved; and in Section 5 we discuss questions relating \(f\)-vectors of flag homology spheres with those of Gorenstein* order complexes.

2. Unzipping

We introduce a construction on graded posets which we call unzipping. Post composition with the corresponding zipping, as defined by Reading [9], gives back the original poset.

Definition 2.1. Let \(P\) be a graded poset with \(\hat{0}\) and \(\hat{1}\), and let \(r : P \to \mathbb{Z}_3^3\) be the rank function of \(P\).

1. (Reading [9]) Let \(x, y, z \in P - \{\hat{0}, \hat{1}\}\) be such that (i) \(x\) covers exactly \(y\) and \(z\), (ii) \(x\) is the unique minimal upper bound of \(y\) and \(z\), and (iii) \(y\) and \(z\) cover exactly the same elements. Let \(Z(P; x, y, z)\) be the poset obtained from \(P\) by deleting \(x, y\) and adding the relations \(w > z\) for all relations \(w > y\).

2. Let \(x, y \in P - \{\hat{0}, \hat{1}\}\) be such that \(x\) covers \(y\). We define the graded poset \(U(P; x, y)\) as follows: delete the cover relation \(y < x\), add elements \(x', y'\) with ranks \(r(x') = r(x), r(y') = r(y)\) and add cover relations (i) \(x' < w\) for all covers \(x < w\), (ii) \(w < y'\) for all covers \(w < y\) and (iii) \(y' < x', y < x'\) and \(y' < x\).

The operations \(P \to Z(P; x, y, z)\) and \(P \to U(P; x, y)\) are called zipping and unzipping respectively. An example is given in Figure 1.

Remark 2.2. In general \(Z(P; x, y, z)\) may not be graded. However, \(Z(P; x, y, z)\) is graded if \(P\) is thin; namely, if for every \(s \geq t\) in \(P\) with \(r(s) - r(t) = 2\), the closed interval \([s, t]\) is a Boolean algebra of rank 2. See [9, Proposition 4.4].

In the rest of this section, we study basic properties of zipping and unzipping. Let \(\Delta\) be a simplicial complex on the vertex set \(V\). The link of \(F \in \Delta\) in \(\Delta\) is the simplicial complex
\[
\text{lk}_\Delta(F) = \{G \subseteq V \setminus F : G \cup F \in \Delta\}.
\]
Definition 2.3. Let Δ be a simplicial complex and let $\{i, j\}$ be an edge of Δ. The (stellar) edge subdivision of Δ with respect to $\{i, j\}$ is the simplicial complex
\[
\{ F \in \Delta : F \not\supset \{i, j\} \} \cup \{ F \cup \{v\}, F \cup \{i, v\}, F \cup \{j, v\} : F \in \text{lk}_\Delta(\{i, j\}) \},
\]
where v is a new vertex. The edge contraction of i to j in Δ is the simplicial complex Δ' which is obtained from Δ by identifying the vertices i and j; in other words,
\[
\Delta' = \{ F \in \Delta : i \notin F \} \cup \{ (F \setminus \{i\}) \cup \{j\} : i \in F \in \Delta \}.
\]

Proposition 2.4. With the same notation as in Definition 2.1:

1. $Z(U(P; x, y); x', y', y) = P$.
2. $O(Z(P; x, y, z))$ is obtained from $O(P)$ by two successive edge contractions: first contract y to x; then contract x to z.
3. $O(U(P; x, y))$ is obtained from $O(P)$ by two successive edge subdivisions: first subdivide $\{x, y\}$ by x'; then subdivide $\{x, x'\}$ by y'.

Proof. Part (1) follows directly from Definition 2.1.

By the definition of the edge contraction, contracting y to x in $O(P)$ and then contracting x to z in Δ obtained from $O(P)$ by replacing x and y by z in all simplices (and deleting repetitions of vertices in a simplex and of simplices). As (i) $z \in Z(P; x, y, z)$ covers the same elements as y and z in P, (ii) $w > z$ in $Z(P; x, y, z)$ if and only if $w \neq x$ and either $w > y$ or $w > z$ in P, and (iii) x covers only $y, z \in P$, we conclude that the simplices of Δ are exactly the chains in $Z(P; x, y, z) - \{\hat{0}, \hat{1}\}$, proving (2).

To prove (3), let Γ be the simplicial complex obtained from $O(P)$ by two successive edge subdivisions: first subdivide $\{x, y\}$ by x'; then subdivide $\{x, x'\}$ by y'. The maximal simplices of Γ are obtained from those of $O(P)$ by replacing each $x, y \in F \in O(P)$ in three ways: by either x, y', or y', x', or x', y. Thus a maximal simplex $F \in O(P)$ corresponds to 3 simplices in Γ. Thus, by construction, these are exactly the maximal chains in $U(P; x, y) - \{\hat{0}, \hat{1}\}$. \qed

We say that a simplicial complex Δ satisfies the link condition with respect to an edge $\{i, j\} \in \Delta$ if $\text{lk}_\Delta(\{i\}) \cap \text{lk}_\Delta(\{j\}) = \text{lk}_\Delta(\{i, j\})$. We get the following corollary, where the case of zipping in Gorenstein* posets was obtained by Reading.
Corollary 2.5. With the same notation as in Definition 2.1.

(i) if P is a Gorenstein* poset, then so are $U(P; x, y)$ and $Z(P; x, y, z);$
(ii) if P is a CW-sphere, then so is $U(P; x, y);$
(iii) (Reading [22 Theorem 4.7]) if $O(P)$ is a PL-sphere, then so is $O(Z(P; x, y, z)).$

Proof. (i) By Proposition 2.4(3) it is enough to consider $Z(P; x, y, z).$ As the edge contractions in Proposition 2.4 satisfy the link condition w.r.t. $\{x, y\}$ and $\{x, z\}$ in the corresponding simplicial complexes, they preserve being a homology sphere [8 Proposition 2.3], i.e. being a Gorenstein* complex; thus (i) is proved.

(ii) Clearly edge subdivisions preserve the homeomorphism type (even the PL-type); thus by Proposition 2.4(3) the order complex $O(U(P; x, y))$ is homeomorphic to a sphere. By Björner’s result [4 Proposition 3.1] we need to verify that for any $t \in P'':=U(P; x, y),$ the complex $O((\hat{0}, t)_{P''})$ is homeomorphic to a sphere, which is clear as $[\hat{0}, t]_{P''}$ is either $U((\hat{0}, t)_{P}; x, y)$ (if $x < t$ in P) or is isomorphic to a lower interval $[\hat{0}, s]_{P}$ for some $s \in P$ (otherwise).

We use the following formula, observed by Reading [9 Theorem 4.6], later on.

Lemma 2.6 (Reading). The cd-index changes under zipping as follows:

$$\Phi_P(c, d) = \Phi_{Z(P; x, y, z)}(c, d) + \Phi_{[\hat{0}, y]}(c, d) \cdot d \cdot \Phi_{[x, 1]}(c, d).$$

Thus, for unzipping we get

$$\Phi_{U(P; x, y)}(c, d) = \Phi_P(c, d) + \Phi_{[0, y]}(c, d) \cdot d \cdot \Phi_{[x, 1]}(c, d).$$

3. cd-indices of Gorenstein* posets of rank 5

In this section, we prove our first main result, Theorem 1.1.

We first recall the join of two posets. Let P and Q be posets with $\hat{0}$ and $\hat{1}.$ The join $P \ast Q$ is the poset on the set $(P - \{\hat{1}\}) \cup (Q - \{\hat{0}\})$ with $x \leq y$ if either (i) $x \leq y$ in $P,$ (ii) $x \leq y$ in $Q,$ or (iii) $x \in P$ and $y \in Q.$ It is not hard to see that $O(P \ast Q)$ is the join of $O(P)$ and $O(Q)$ (as simplicial complexes). Thus, if P and Q are Gorenstein*, then so is $P \ast Q.$ The following formula was given in [10 Lemma 1.1].

Lemma 3.1. If P and Q are Gorenstein* posets, then

$$\Phi_{P \ast Q}(c, d) = \Phi_P(c, d)\Phi_Q(c, d).$$

In the rest of this section, we focus on Gorenstein* posets of rank 5. For a Gorenstein* poset of rank 5, we write its cd-index in the form

$$\Phi_P(c, d) = c^4 + \alpha_1(P)dc^2 + \alpha_2(P)cdc + \alpha_3(P)c^2d + \alpha_{13}(P)d^2.$$

We often use the following formula (we leave it to readers to verify the formula):

$$f_{(2, 3)}(P) = \alpha_{13}(P) + 2(\alpha_1(P) + \alpha_2(P) + \alpha_3(P)) + 4.$$

We first study necessary conditions of cd-indices of Gorenstein* posets of rank 5. The following results were shown in [7 Propositions 4.4 and 4.6].

Lemma 3.2. If P is a Gorenstein* poset of rank 5, then $\alpha_{13}(P) \leq \alpha_1(P)\alpha_3(P).$

Lemma 3.3. Let P be a Gorenstein* poset of rank 5 with $\alpha_2(P) = 0.$ Then there are Gorenstein* posets Q_1 and Q_2 of rank 3 such that $P = Q_1 \ast Q_2.$ In particular, $\alpha_{13}(P) = \alpha_1(P)\alpha_3(P).$
The next result gives a new restriction on cd-indices.

Lemma 3.4. Let P be a Gorenstein* poset of rank 5. If $\alpha_2(P) = 1$, then there are non-negative integers $b_1, b_2, b_3, c_1, c_2, c_3$ such that $\alpha_1(P) = b_1 + b_2 + b_3$, $\alpha_3(P) = c_1 + c_2 + c_3$ and $\alpha_3(P) = \alpha_1(P)\alpha_3(P) - (b_1c_1 + b_2c_2 + b_3c_3)$.

Proof. Consider the subposet $Q = \{\sigma \in P : r(\sigma) \in \{1, 2\}\}$, where $r : P \to \mathbb{Z}_{\geq 0}$ is the rank function of P. Since $(0, x)$ is the face poset of a cycle for any rank 3 element $x \in P$, the poset Q is the face poset of a CW-complex Γ which is a union of cycles. Also, Q is a Cohen-Macaulay poset since Q is a rank selected subposet of P (cf. [11, III, Theorem 4.5]), which implies that the CW-complex Γ is connected. Similarly, let Q' be the dual of the above argument, it follows that Q' is also the face poset of a connected CW-complex Γ' which is a union of cycles.

Since $f_{\{1\}}(P) = 2 + \alpha_1(P)$ and $f_{\{2\}}(P) = 2 + \alpha_1(P) + \alpha_2(P)$, $\alpha_2(P) = 1$ implies that the number of edges in Γ is equal to the number of vertices in Γ plus 1. Since Γ is a union of cycles, this fact shows that Γ is a union of two simple cycles C and C' such that the intersection of C and C' is either a point or a non-trivial simple path (namely, a simple path with at least one edge).

Suppose $C \cap C'$ is a point. Then C and C' are the only simple cycles in Γ. Thus, for each rank 3 element $x \in P$, $(0, x)$ is equal to the face poset of C or that of C'. Then, for each rank 4 element $y \in P$, y must cover exactly two elements x and x' with $(0, x) = (0, x')$ since P is Gorenstein*. However, this fact shows that Γ' has two connected components, which contradicts the connectedness of Γ'. Hence $C \cap C'$ is a non-trivial simple path.

Let C'' be the cycle in Γ obtained from $C \cup C'$ by removing the interior of $C \cap C'$. Then, C, C' and C'' are the only simple cycles in Γ, and for each rank 3 element $x \in P$, $(0, x)$ must coincide with C, C' or C''. Let c_1, c_2, c_3 be the number of rank 3 elements $x \in P$ such that $(0, x)$ coincides with C, C' or C'' respectively. Let b_1, b_2, b_3 be the lengths of the simple paths $C \cap C'', C \cap C''$, $C \cap C'$ respectively, by means of the number of edges. Clearly $b_i \geq 1$. Also, since Γ' is connected, by using the same argument as when we concluded that $C \cap C'$ is a non-trivial simple path, we have $c_i \geq 1$.

Then, we have

$$f_{\{2,3\}}(P) = c_1(b_2 + b_3) + c_2(b_1 + b_3) + c_3(b_1 + b_2)$$

$$= (b_1 + b_2 + b_3)(c_1 + c_2 + c_3) - (b_1c_1 + b_2c_2 + b_3c_3).$$

Set $b'_i = b_i - 1$ and $c'_i = c_i - 1$ for $i = 1, 2, 3$. Then, since $\alpha_2(P) = 1$, $\alpha_1(P) = f_{\{2\}}(P) - 3 = b'_1 + b'_2 + b'_3$ and $\alpha_3(P) = f_{\{3\}}(P) - 3 = c'_1 + c'_2 + c'_3$. By using [11] and the above equation, a routine computation shows $\alpha_3(P) = \alpha_1(P)\alpha_3(P) - (b'_1c'_1 + b'_2c'_2 + b'_3c'_3)$, as desired. \hfill \Box

Now, we prove Theorem 1.1. In the proof, we use the following notation. Let P be a Gorenstein* poset and let σ and τ be elements of $P \setminus \{0, 1\}$ such that σ covers τ. We say that Q is obtained from P by unzipping (σ, τ) k times if Q is obtained by the following successive process: First, unzip (σ, τ) and consider $P' = \mathcal{U}(P; \sigma, \tau)$. This unzipping creates new elements σ' and τ' such that σ' covers τ' in P'. Next, unzip (σ', τ') in P', and consider $P'' = \mathcal{U}(P'; \sigma', \tau')$. Again, we obtain new elements σ'' and τ'' such that σ'' covers τ'' in P'', we continue this procedure k times. Note that by Lemma 2.6, we have $\Phi_Q(c, d) = \Phi_P(c, d) + k \cdot \Phi_{\{0,1\}}(c, d) \cdot d \cdot \Phi_{\{\sigma,\tau\}}(c, d)$.\hfill \Box
Proof of Theorem 1.1. The necessity follows from Lemmas 3.2, 3.3 and 3.4. We prove the sufficiency. Let \(C_k \) be the Gorenstein\(^*\) poset of rank 3 corresponding to a cycle of length \(k \) (i.e. \(C_k - \{ 0, 1 \} \) is the face poset of a cycle of length \(k \)).

(i) Observe that \(\Phi_{C_k}(c, d) = c^2 + (k-2)d \). Then, for all non-negative integers \(\alpha_1 \) and \(\alpha_3 \), the join \(C_{\alpha_1+2} \star C_{\alpha_3+2} \) is a Gorenstein\(^*\) poset of rank 5 with the desired c\(d\)-index

\[
\Phi_{C_{\alpha_1+2} \star C_{\alpha_3+2}}(c, d) = \Phi_{C_{\alpha_1+2}}(c, d) \cdot \Phi_{C_{\alpha_3+2}}(c, d) = c^4 + \alpha_1 dc^2 + \alpha_3 c^2 d + \alpha_1 \alpha_3 d^2.
\]

(ii) Let \(Q = \tilde{B}_2 \star C_3 \star \tilde{B}_2 \) as described in Figure 2(a), where \(\tilde{B}_2 \) is the Boolean algebra of rank 2. Note that \(\Phi_Q(c, d) = c^4 + cd \) by Lemma 3.1.

Let \(R \) be the Gorenstein\(^*\) poset obtained from \(Q \) by unzipping \((\tau_i, \rho) \) \(b_i \) times for \(i = 1, 2, 3 \) and by unzipping \((\pi, \sigma_i) \) \(c_i \) times for \(i = 1, 2, 3 \). We claim that \(R \) has the desired c\(d\)-index. By Lemma 2.6, \(\alpha_1(R) = b_1 + b_2 + b_3 \), \(\alpha_2(R) = 1 \) and \(\alpha_3(R) = c_1 + c_2 + c_3 \). It remains to prove \(\alpha_{13}(R) = \alpha_1(R)\alpha_3(R) - (b_1c_1 + b_2c_2 + b_3c_3) \).

For \(i = 1, 2, 3 \), let \(B_i \) be the set of rank 2 elements of \(R \) that consists of \(\tau_i \) and elements which are added when we unzip \((\tau_i, \rho) \) \(b_i \) times, and define the set \(C_i \) of rank 3 elements of \(R \) with \(\sigma_i \in C_i \) similarly. Then, since each element of \(C_i \) exactly covers all rank 2 elements which are not in \(B_i \),

\[
f_{\{2,3\}}(R) = |C_1||B_2| + |B_3|) + |C_2||B_1| + |B_3|) + |C_3||(B_1| + |B_2|)
= (|B_1| + |B_2| + |C_3|)|C_1| + |C_2| + |C_3|) - (|B_1||C_1| + |B_2||C_2| + |B_3||C_3|).
\]

Observe \(b_i = |B_i| - 1 \) and \(c_i = |C_i| - 1 \) for \(i = 1, 2, 3 \). Then, in the same way as in the proof of Lemma 3.4 and routine computations guarantee \(\alpha_{13}(R) = \alpha_1(R)\alpha_3(R) - (b_1c_1 + b_2c_2 + b_3c_3) \).

(iii) Let \(\alpha_1, \alpha_2, \alpha_3 \) and \(\alpha_{13} \) be non-negative integers with \(\alpha_2 \geq 2 \) and \(\alpha_{13} \leq \alpha_1\alpha_3 \). Let \(Q' = \tilde{B}_2 \star C_4 \star \tilde{B}_2 \) as described in Figure 2(b). Note that \(\Phi_Q(c, d) = c^4 + 2cd \).

Case 1. Suppose \(\alpha_1 = 0 \). Then \(\alpha_{13} = 0 \) by the assumption. Let \(P \) be the Gorenstein\(^*\) poset obtained from \(Q' \) by unzipping \((\pi, \sigma_1) \) \(\alpha_3 \) times and by unzipping \((\sigma_1, \tau_1) \) \(\alpha_2 - 2 \) times. Lemma 2.6 shows that \(P \) has the desired c\(d\)-index \(c^4 + \alpha_2 cd + \alpha_3 c^2 d \).
Case 2. Suppose $\alpha_1 > 0$ and $\alpha_{13} \leq \alpha_1$. Let R' be the Gorenstein* poset obtained from Q' by applying the following unzipping:

- (U1) unzip (τ_1, ρ) α_{13} times;
- (U2) unzip (τ_4, ρ) $(\alpha_1 - \alpha_{13})$ times;
- (U3) unzip (π, σ_1);
- (U4) unzip (π, σ_2) $(\alpha_3 - 1)$ times.

By Lemma 2.6, $\alpha_1(R') = \alpha_{13} + (\alpha_1 - \alpha_{13}) = \alpha_1$, $\alpha_2(R') = 2$ and $\alpha_3(R') = 1 + (\alpha_3 - 1) = \alpha_3$. We claim that $\alpha_{13}(R') = \alpha_{13}$.

Let B_1 be the set of rank 2 elements of R' consisting of τ_1 and elements which are added by unzipping (U1), and let B_4 be that consisting of τ_4 and elements added by (U2). Similarly, let C_1 be the set of rank 3 elements of R' consisting of σ_1 and the element added by (U3), and let C_2 be that consisting of τ_2 and elements added by (U4). Finally, let $B_2 = \{\tau_2\}$, $B_3 = \{\tau_3\}$, $C_3 = \{\sigma_3\}$ and $C_4 = \{\sigma_4\}$.

Then $B_1 \cup \cdots \cup B_4$ and $C_1 \cup \cdots \cup C_4$ are partitions of the sets of elements of R' of ranks 2 and 3 respectively. Also, elements in B_i exactly cover elements in B_i and B_{i+1}, where we consider $B_5 = B_1$. This implies

$$f_{\{2,3\}}(R) = |C_1(\mid B_1\mid + \mid B_2\mid) + |C_2(\mid B_2\mid + \mid B_3\mid) + |C_3(\mid B_3\mid + \mid B_4\mid) + |C_4(\mid B_4\mid + \mid B_1\mid)$$

$$= 2 \cdot (\alpha_{13} + 2) + \alpha_3 \cdot 2 + 1 \cdot (\alpha_1 - \alpha_{13} + 2) + 1 \cdot (\alpha_1 + 2)$$

$$= \alpha_1 + 2(\alpha_1 + 2 + \alpha_3) + 4.$$

Hence $\alpha_{13}(R) = \alpha_{13}$ by (1).

Finally, consider the Gorenstein* poset P obtained from R' by unzipping (σ_1, τ_1) $(\alpha_2 - 2)$ times. Then Lemma 2.6 shows that P has the desired cd-index:

$$\Phi_P(c, d) = \Phi_{R'}(c, d) + (\alpha_2 - 2)cdc = c^4 + \alpha_1 dc^2 + \alpha_2 cdc + \alpha_3 c^2 d + \alpha_{13} d^2.$$

Case 3. Suppose $\alpha_1 > 0$ and $\alpha_{13} > \alpha_1$. Recall $\alpha_{13} \leq \alpha_1 \alpha_3$. Let $\beta \leq \alpha_3$ be the integer satisfying $\alpha_1(\beta - 1) < \alpha_{13} \leq \alpha_1 \beta$ and let

$$p = \alpha_1 \beta - \alpha_{13}.$$

Note that $\beta \geq 2$ and $0 \leq p < \alpha_1$. Let R' be the Gorenstein* poset obtained from Q' by applying the following unzipping:

- (U1) unzip (τ_1, ρ) $(\alpha_1 - p)$ times and unzip $(\tau, \rho) \ p$ times;
- (U2) unzip (π, σ_1) $(\beta - 1)$ times, unzip (π, σ_3) $(\alpha_3 - \beta)$ times, and unzip (π, σ_4).

Then, Lemma 2.6 shows that $\alpha_4(R') = \alpha_1$, $\alpha_2(R') = 2$ and $\alpha_3(R') = \alpha_3$. Also, a computation similar to Case 2 shows that

$$f_{\{2,3\}}(R) = \beta \cdot (\alpha_1 + 2) + 1 \cdot (p + 2) + (\alpha_3 - \beta + 1) \cdot 2 + 2 \cdot (\alpha_1 - p + 2)$$

$$= (\beta \alpha_1 - p) + 2(\alpha_3 + 2 + \alpha_1) + 4.$$

Since $\alpha_{13} = \beta \alpha_1 - p$, the above equation and (1) show that $\alpha_{13}(R') = \alpha_{13}$.

Then the Gorenstein* poset P obtained from R' by unzipping (σ_1, τ_1) $(\alpha_2 - 2)$ times has the desired cd-index.

Corollary 3.5. Let G^*_k be the set of cd-indices of Gorenstein* posets of rank k and let CW_k be the set of cd-indices of CW-spheres of dimension k. Then $G^*_k = CW_k$. \[\]
Proof. Notice that if P is the face poset of a CW-sphere, then the unzipped poset $P' = U(P; x, y)$ is also the face poset of a CW-sphere by Corollary 2.3 (the union of the open balls corresponding to the cells $x', x, y' \in P'$ is the open ball corresponding to the cell $x \in P$). Thus, it is enough to verify that the posets $Q, Q', C_{a_1+2} \ast C_{a_3+2}$ appearing in the proof of sufficiency in Theorem 1.1 are the face posets of CW-spheres, which is easy to do.

4. d-vectors of Gorenstein* posets of rank 5 and 6

In this section, we study d-vectors of Gorenstein* posets of rank 5 and 6. We often use the following obvious fact.

Lemma 4.1. Let x and y be non-negative integers. Then $y \leq \frac{x^2}{4}$ if and only if there are non-negative integers a and b such that $y \leq ab$ and $a + b \leq x$.

We first classify d-vectors of Gorenstein* posets of rank 5.

Theorem 4.2. The vector $(1, x, y) \in \mathbb{Z}_{\geq 0}^3$ is the d-vector of a Gorenstein* poset of rank 5 if and only if it satisfies $y \leq \frac{(x-1)^2}{4}$ or there are non-negative integers a and b such that $x = a + b$ and $y = ab$.

Proof. (Necessity). Let P be a Gorenstein* poset and $d(P) = (1, x, y)$. Suppose $y > \frac{(x-1)^2}{4}$. We show that there are non-negative integers a and b such that $x = a + b$ and $y = ab$.

Observe that $x = \alpha_1(P) + \alpha_2(P) + \alpha_3(P)$ and $y = \alpha_{13}(P)$. Then

$$\frac{(x-1)^2}{4} < y = \alpha_{13}(P) \leq \alpha_1(P)\alpha_3(P) \leq \frac{(\alpha_1(P) + \alpha_3(P))^2}{4} \leq \frac{x^2}{4}. $$

This says that $\alpha_1(P) + \alpha_3(P) = x$ and therefore $\alpha_2(P) = 0$. Then Theorem 1.1(i) shows that $y = \alpha_1(P)\alpha_3(P)$.

(Sufficiency). For all non-negative integers a and b, $d(C_{a+2} \ast C_{b+2}) = (1, a+b, ab)$ by Lemma 3.1. Let $(1, x, y) \in \mathbb{Z}_{\geq 0}^3$ with $y \leq \frac{(x-1)^2}{4}$. What we must prove is that there is a Gorenstein* poset of rank 5 such that $d(P) = (1, x, y)$.

Since $y \leq \frac{(x-1)^2}{4}$, there are non-negative integers a and b such that $y \leq ab$ and $a + b \leq x - 1$. We may choose these integers so that $a(b-1) < y \leq ab$. Let $\alpha_1 = a$, $\alpha_2 = x - a - b$, $\alpha_3 = b$ and $\alpha_{13} = y$. It is enough to show that there is a Gorenstein* poset of rank 5 whose cd-index is $c^1 + \alpha_1 dc^2 + \alpha_2 ccdc + \alpha_3 c^2d + \alpha_{13} d^2$. If $\alpha_2 \geq 2$, then the existence of such a poset follows from Theorem 1.1(iii). If $\alpha_2 < 2$, then $\alpha_2 = 1$. We claim that $\alpha_1, \alpha_3, \alpha_{13}$ satisfy the conditions in Theorem 1.1(ii). If $b = 0$, then the statement is obvious. If $b > 0$, then, since $0 \leq (ab-y) < a$, the partition of integers $a = (ab-y) + 0 + (a- (ab-y))$ and $b = 1 + (b-1) + 0$ shows that $\alpha_1, \alpha_3, \alpha_{13}$ satisfy the desired conditions.

Next, we consider Gorenstein* posets of rank 6.

Theorem 4.3. The vector $(1, x, y) \in \mathbb{Z}_{\geq 0}^3$ is the d-vector of a Gorenstein* poset of rank 6 if and only if it satisfies $y \leq \frac{x^2}{4}$.

Proof. (Necessity). Let P be a Gorenstein* poset of rank 6 and $d(P) = (1, x, y)$. We write the cd-index of P in the form

$$\Phi(P) = c^5 + \alpha_1 dc^3 + \alpha_2 cdc^2 + \alpha_3 c^2d + \alpha_4 c^3d + \alpha_{13} d^2c + \alpha_{14} dcd + \alpha_{24} cd^2.$$

It was proved in [7, Proposition 4.4] that \(\alpha_{13} \leq \alpha_1 \alpha_3, \alpha_{14} \leq \alpha_1 \alpha_4 \) and \(\alpha_{24} \leq \alpha_2 \alpha_4 \). Then, since \(x = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 \) and \(y = \alpha_{13} + \alpha_{14} + \alpha_{24} \), we have

\[
y \leq \alpha_1 \alpha_3 + \alpha_1 \alpha_4 + \alpha_2 \alpha_4 \leq (\alpha_1 + \alpha_2)(\alpha_3 + \alpha_4) \leq \frac{x^2}{4},
\]
as desired.

(Sufficiency). Let \((1, x, y) \in \mathbb{Z}_{\geq 0}^3\) with \(y \leq \frac{x^2}{4} \). We show that there is a Gorenstein* poset of rank 6 whose \(d \)-vector is \((1, x, y) \). Since \(d(P) = d(P * B_2) \) for any Gorenstein* poset \(P \) of rank 5, by Theorem 4.2 we may assume \(\frac{(x-1)^2}{4} < y \leq \frac{x^2}{4} \).

Then there are positive integers \(a \) and \(b \) such that \(a(b-1) < y \leq ab \) and \(a + b = x \).

Let \(r = ab - y \). Then \(0 \leq r < a \) and

\[
(b-1)(a-r) + r(b-1) + (a-r) = y.
\]

Let \(Q = C_{a-r+2} * B_2 * C_{b+1} \). By Lemma 3.1, \(d(Q) = (1, a-r+b-1, (a-r)(b-1)) \). Let \(\rho \) be a rank 2 element of \(P \), \(\pi \) a rank 4 element of \(P \), and let \(\sigma, \tau \) be the rank 3 elements of \(P \). Note that \([0, \rho] = [\pi, 1] = \hat{B}_2\), \([0, \tau] = C_{a-r+2}\) and \([\sigma, 1] = C_{b+1}\).

Let \(P \) be the Gorenstein* poset obtained from \(Q \) by unzipping \((\sigma, \rho)\) \(r \) times and by unzipping \((\pi, \tau)\). Then, by Lemma 2.6 we have

\[
d(P) = d(Q) + r(0, 1, b-1) + (0, 1, a-r) = (1, a + b, (a-r)(b-1) + r(b-1) + (a-r)) = (1, x, y),
\]
as desired. \(\square \)

Remark 4.4. Gal [5] proved that \(\gamma_2(\Delta) \leq \frac{n(\Delta)^2}{4} \) for any flag homology 4-sphere \(\Delta \) (see Section 5 for details). This result and the relation between \(d \)-vectors and \(\gamma \)-vectors give an alternative proof of the necessity of Theorem 4.3.

Remark 4.5. For the posets \(P \) constructed to show sufficiency in Theorems 1.1, 4.2 and 4.3, their order complexes \(\mathcal{O}(P) \) are polytopal; namely, \(\mathcal{O}(P) \) can be realized as the boundary complex of a (simplicial) polytope.

Indeed, it is not hard to see that \(P \) is obtained from the join \(\hat{B}_2 * \hat{B}_2 * \cdots * \hat{B}_2 \) of Boolean algebras of rank 2 by applying unzipping repeatedly. The order complex of the join of Boolean algebras of rank 2 is the boundary of a cross polytope. As edge subdivisions preserve polytopality (just place the new vertex beyond the edge; cf. [12, p. 78]), by Proposition 2.3 we conclude that \(\mathcal{O}(P) \) is polytopal. Note that \(P \) itself is not the face poset of a polytope. Indeed, it is not even a lattice.

5. Questions

Let \(\Delta \) be an \((n-1)\)-dimensional simplicial complex. Recall that the \(f \)-vector \(f(\Delta) = (1, f_0, f_1, \ldots, f_{n-1}) \) of \(\Delta \) is defined by \(f_i = |\{F \in \Delta : |F| = i + 1\}| \), and the \(h \)-vector \(h(\Delta) = (h_0, h_1, \ldots, h_n) \) of \(\Delta \) is defined by the relation

\[
\sum_{i=0}^{n} h_i x^{n-i} = \sum_{i=0}^{n} f_{i-1} (x-1)^{n-i}.
\]
If Δ is Gorenstein*, then $h_i = h_{n-i}$ for all i by the Dehn-Sommerville equations, and in this case the γ-vector $\gamma(\Delta) = (\gamma_0, \gamma_1, \ldots, \gamma_{\lfloor \frac{n}{2} \rfloor})$ of Δ is defined by the relation
\[
\sum_{i=0}^{n} h_i x^i = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \gamma_i x^i (1 + x)^{n-2i}.
\]
Thus, if Δ is the order complex $O(P)$ of a Gorenstein* poset P, $\gamma(\Delta)$ and $d(P) = (1, \delta_1, \ldots, \delta_{\lfloor \frac{n}{2} \rfloor})$ are related by $\gamma_i = 2 \delta_i$ for all i.

A simplicial complex is said to be flag if every minimal non-face has at most two elements. The study of γ-vectors of flag homology spheres (namely, flag Gorenstein* complexes) is one of the current trends in face enumeration. On γ-vectors of flag homology spheres, one of the most important open problems is the conjecture of Gal [5, Conjecture 2.1.7] which states that the γ-vector of a flag homology sphere is non-negative.

The study of γ-vectors of flag homology spheres (namely, flag Gorenstein* complexes) is one of the current trends in face enumeration. On γ-vectors of flag homology spheres, one of the most important open problems is the conjecture of Gal [5, Conjecture 2.1.7] which states that the γ-vector of a flag homology sphere is non-negative. Gal’s conjecture is known to be true in dimension ≤ 4. Moreover, in low dimension Gal essentially proved the following result.

Theorem 5.1 (Gal). Let Λ_k be the set of γ-vectors of flag homology k-spheres.

(i) $\Lambda_3 \supset \{(1, x, y) \in \mathbb{Z}_{\geq 0}^3 : y \leq \frac{(x-1)^2}{4} \} \cup \{(x, y) \in \mathbb{Z}_{\geq 0}^3 : y \leq \frac{x^2}{4} \}$.

(ii) $\Lambda_4 = \{(1, x, y) \in \mathbb{Z}_{\geq 0}^3 : y \leq \frac{x^2}{4} \}$.

Proof. (i) is proved in [5, Theorem 3.2.1], and $\Lambda_4 \subseteq \{(1, x, y) \in \mathbb{Z}_{\geq 0}^3 : y \leq \frac{x^2}{4} \}$ is proved in [5, Theorem 3.1.3]. It remains to show the reverse containment in (ii).

We sketch the proof since it is similar to that of Theorem 4.3. Let $(1, x, y) \in \mathbb{Z}_{\geq 0}^3$ with $y \leq \frac{x^2}{4}$. As taking suspension does not change the γ-vector, we may assume $rac{(x-1)^2}{4} < y \leq \frac{x^2}{4}$; in particular $x \geq 2$ and $y \geq 1$. Then there are $a, b, r \in \mathbb{Z}_{\geq 0}$ with $a, b \geq 1$ and $r < a$ such that $a + b = x$ and $ab - r = y$. Consider the simplicial complex $K = \tilde{C}_{a-r+4} \ast \tilde{B}_2 \ast \tilde{C}_{b+3}$, where \tilde{C}_k is the cycle (1-dimensional simplicial sphere) of length k and where \tilde{B}_2 is the 0-sphere with vertices $\{x, y\}$. (Here we consider the join as simplicial complexes.) Then, by multiplicity of γ w.r.t. joins (cf. [5, Remark 2.1.9]), $\gamma(K) = (1, a - r + b - 1, (a - r)(b - 1))$. Let $\{s\} \in C_{a-r+4}$ and $\{t\} \in C_{b+3}$. If we subdivide the edge $\{x, s\}$ r-times and subdivide the edge $\{y, t\}$, by [5, Proposition 2.4.3] we obtain a flag 4-sphere Δ with $\gamma(\Delta) = (1, x, y)$. \hfill \Box

Moreover, Gal [5, Conjecture 3.2.2] conjectured the following, which, if true, gives a complete characterization of the f-vectors of flag homology 3-spheres.

Conjecture 5.2 (Gal). Let Δ be a flag homology 3-sphere and let $\gamma(\Delta) = (1, \gamma_1, \gamma_2)$. If $\gamma_2 > \frac{(\gamma_1-1)^2}{4}$, then Δ is the join of two cycles.

Note that Lemma 3.3 and the proof of Theorem 4.2 show that the above conjecture is true for order complexes. Very recently, it was shown that this conjecture is true when γ_1 is large [1]. If the above conjecture is true, then the inclusion in Theorem 5.1(i) becomes an equality. These facts and Theorem 4.2 suggest the following question.

Question 5.3. Let D_k be the set of d-vectors of Gorenstein* posets of rank $k + 2$. Is there any relation between Λ_k and D_k? Is it true that $\Lambda_k = D_k$ for all k? Or at least does Λ_k contain D_k?
Note that the equality in Question 5.3 would imply Gal’s conjecture on the non-negativity of the γ-vector of flag spheres by Karu’s result on the non-negativity of the cd-index of Gorenstein* posets [6].

ACKNOWLEDGMENTS

The authors thank the referee for helpful comments. The second author would like to thank artblau Tanzwerkstatt Braunschweig and the Cornell University math department for their hospitality while working on this manuscript.

REFERENCES

Department of Mathematical Science, Faculty of Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8512, Japan
E-mail address: murai@yamaguchi-u.ac.jp

Department of Mathematics, Ben Gurion University of the Negev, Be’er Sheva 84105, Israel
E-mail address: nevoe@math.bgu.ac.il