Proper twin-triangular $\mathbb {G}_{a}$-actions on $\mathbb {A}^{4}$ are translations
HTML articles powered by AMS MathViewer
- by Adrien Dubouloz and David R. Finston
- Proc. Amer. Math. Soc. 142 (2014), 1513-1526
- DOI: https://doi.org/10.1090/S0002-9939-2014-11932-0
- Published electronically: February 13, 2014
- PDF | Request permission
Abstract:
An additive group action on an affine $3$-space over a complex Dedekind domain $A$ is said to be twin-triangular if it is generated by a locally nilpotent derivation of $A[y,z_{1},z_{2}]$ of the form $r\partial _{y}+p_{1}(y)\partial _{z_{1}}+p_{2}(y)\partial _{z_{2}}$, where $r\in A$ and $p_{1},p_{2}\in A[y]$. We show that these actions are translations if and only if they are proper. Our approach avoids the computation of rings of invariants and focuses more on the nature of geometric quotients for such actions.References
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- Hyman Bass, A nontriangular action of $\textbf {G}_{a}$ on $\textbf {A}^{3}$, J. Pure Appl. Algebra 33 (1984), no. 1, 1–5. MR 750225, DOI 10.1016/0022-4049(84)90019-7
- H. Bass, E. H. Connell, and D. L. Wright, Locally polynomial algebras are symmetric algebras, Invent. Math. 38 (1976/77), no. 3, 279–299. MR 432626, DOI 10.1007/BF01403135
- Daniel Daigle and Gene Freudenburg, Locally nilpotent derivations over a UFD and an application to rank two locally nilpotent derivations of $k[X_1,\cdots ,X_n]$, J. Algebra 204 (1998), no. 2, 353–371. MR 1624439, DOI 10.1006/jabr.1998.7465
- James K. Deveney and David R. Finston, $G_a$ actions on $\textbf {C}^3$ and $\textbf {C}^7$, Comm. Algebra 22 (1994), no. 15, 6295–6302. MR 1303005, DOI 10.1080/00927879408825190
- James K. Deveney and David R. Finston, A proper $\textbf {G}_a$ action on $\textbf {C}^5$ which is not locally trivial, Proc. Amer. Math. Soc. 123 (1995), no. 3, 651–655. MR 1273487, DOI 10.1090/S0002-9939-1995-1273487-0
- James K. Deveney and David R. Finston, Regular $G_a$ invariants, Osaka J. Math. 39 (2002), no. 2, 275–282. MR 1914293
- James K. Deveney, David R. Finston, and Mai Gehrke, $\textbf {G}_a$ actions on $\mathbf C^n$, Comm. Algebra 22 (1994), no. 12, 4977–4988. MR 1285720, DOI 10.1080/00927879408825115
- James K. Deveney, David R. Finston, and Peter van Rossum, Triangular $\mathbf G_a$ actions on $\mathbf C^4$, Proc. Amer. Math. Soc. 132 (2004), no. 10, 2841–2848. MR 2063101, DOI 10.1090/S0002-9939-04-07500-8
- A. Dubouloz, Sur une classe de schémas avec actions de fibrés en droites (on a class of schemes with line bundles actions), Ph.D. thesis, Université Joseph-Fourier, 2004.
- A. Dubouloz, Affine open subsets in $\mathbb {A}^3$ without the cancellation property, Commutative Algebra and Algebraic Geometry (CAAG-2010): Proceedings of the Bangalore conference in honour of B. Singh, U. Storch and R. Gurjar, Ramanujan Mathematical Society Lecture Notes Series, no. 17, 2013. (ISBN: 9789380416106)
- Adrien Dubouloz and Pierre-Marie Poloni, On a class of Danielewski surfaces in affine 3-space, J. Algebra 321 (2009), no. 7, 1797–1812. MR 2494748, DOI 10.1016/j.jalgebra.2008.12.009
- Karl-Heinz Fieseler, On complex affine surfaces with $\textbf {C}^+$-action, Comment. Math. Helv. 69 (1994), no. 1, 5–27. MR 1259603, DOI 10.1007/BF02564471
- Shulim Kaliman, Free $\mathbf C_+$-actions on $\mathbf C^3$ are translations, Invent. Math. 156 (2004), no. 1, 163–173. MR 2047660, DOI 10.1007/s00222-003-0336-1
- Herbert Popp, Moduli theory and classification theory of algebraic varieties, Lecture Notes in Mathematics, Vol. 620, Springer-Verlag, Berlin-New York, 1977. MR 0466143
- Rudolf Rentschler, Opérations du groupe additif sur le plan affine, C. R. Acad. Sci. Paris Sér. A-B 267 (1968), A384–A387 (French). MR 232770
- A. Sathaye, Polynomial ring in two variables over a DVR: a criterion, Invent. Math. 74 (1983), no. 1, 159–168. MR 722731, DOI 10.1007/BF01388536
- Dennis M. Snow, Triangular actions on $\textbf {C}^3$, Manuscripta Math. 60 (1988), no. 4, 407–415. MR 933471, DOI 10.1007/BF01258660
- Jörg Winkelmann, On free holomorphic $\bf C$-actions on $\textbf {C}^n$ and homogeneous Stein manifolds, Math. Ann. 286 (1990), no. 1-3, 593–612. MR 1032948, DOI 10.1007/BF01453590
Bibliographic Information
- Adrien Dubouloz
- Affiliation: Institut de Mathématiques de Bourgogne, Université de Bourgogne, 9 avenue Alain Savary - BP 47870, 21078 Dijon cedex, France
- Email: Adrien.Dubouloz@u-bourgogne.fr
- David R. Finston
- Affiliation: Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003
- Address at time of publication: Department of Mathematics, Brooklyn College CUNY, 2900 Bedford Avenue, Brooklyn, New York 11210
- Email: dfinston@brooklyn.cuny.edu
- Received by editor(s): October 14, 2011
- Received by editor(s) in revised form: June 8, 2012
- Published electronically: February 13, 2014
- Additional Notes: This research was supported in part by NSF Grant OISE-0936691 and ANR Grant 08-JCJC-0130-01
- Communicated by: Harm Derksen
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 142 (2014), 1513-1526
- MSC (2010): Primary 14R20, 14L30
- DOI: https://doi.org/10.1090/S0002-9939-2014-11932-0
- MathSciNet review: 3168459
Dedicated: Dedicated to Jim Deveney on the occasion of his retirement