Free Banach spaces and the approximation properties
Authors:
Gilles Godefroy and Narutaka Ozawa
Journal:
Proc. Amer. Math. Soc. 142 (2014), 1681-1687
MSC (2010):
Primary 46B20; Secondary 46B28, 46B50
DOI:
https://doi.org/10.1090/S0002-9939-2014-11933-2
Published electronically:
February 18, 2014
MathSciNet review:
3168474
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We characterize the metric spaces whose free spaces have the bounded approximation property through a Lipschitz analogue of the local reflexivity principle. We show that there exist compact metric spaces whose free spaces fail the approximation property.
- [An] T. Ando, A theorem on nonempty intersection of convex sets and its application, J. Approximation Theory 13 (1975), 158–166. MR 385520, https://doi.org/10.1016/0021-9045(75)90049-0
- [Ar] William Arveson, Notes on extensions of 𝐶^{*}-algebras, Duke Math. J. 44 (1977), no. 2, 329–355. MR 438137
- [BL] Yoav Benyamini and Joram Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000. MR 1727673
- [BB] Alexander Brudnyi and Yuri Brudnyi, Metric spaces with linear extensions preserving Lipschitz condition, Amer. J. Math. 129 (2007), no. 1, 217–314. MR 2288741, https://doi.org/10.1353/ajm.2007.0000
- [Bo] Laetitia Borel-Mathurin, Approximation properties and non-linear geometry of Banach spaces, Houston J. Math. 38 (2012), no. 4, 1135–1148. MR 3019026
- [Ca] Peter G. Casazza, Approximation properties, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 271–316. MR 1863695, https://doi.org/10.1016/S1874-5849(01)80009-7
- [DL] Y. Dutrieux and G. Lancien, Isometric embeddings of compact spaces into Banach spaces, J. Funct. Anal. 255 (2008), no. 2, 494–501. MR 2419968, https://doi.org/10.1016/j.jfa.2008.04.002
- [Go] A. Godard, Tree metrics and their Lipschitz-free spaces, Proc. Amer. Math. Soc. 138 (2010), no. 12, 4311–4320. MR 2680057, https://doi.org/10.1090/S0002-9939-2010-10421-5
- [GK] G. Godefroy and N. J. Kalton, Lipschitz-free Banach spaces, Studia Math. 159 (2003), no. 1, 121–141. Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday. MR 2030906, https://doi.org/10.4064/sm159-1-6
- [HWW] P. Harmand, D. Werner, and W. Werner, 𝑀-ideals in Banach spaces and Banach algebras, Lecture Notes in Mathematics, vol. 1547, Springer-Verlag, Berlin, 1993. MR 1238713
- [Ka1] N. J. Kalton, Spaces of Lipschitz and Hölder functions and their applications, Collect. Math. 55 (2004), no. 2, 171–217. MR 2068975
- [Ka2] Nigel J. Kalton, The nonlinear geometry of Banach spaces, Rev. Mat. Complut. 21 (2008), no. 1, 7–60. MR 2408035, https://doi.org/10.5209/rev_REMA.2008.v21.n1.16426
- [Ka3] N. J. Kalton, The uniform structure of Banach spaces, Math. Ann. 354 (2012), no. 4, 1247–1288. MR 2992997, https://doi.org/10.1007/s00208-011-0743-3
- [LP] G. Lancien and E. Pernecká, Approximation properties and Schauder decompositions in Lipschitz-free spaces, J. Funct. Anal. 264 (2013), no. 10, 2323–2334. MR 3035057, https://doi.org/10.1016/j.jfa.2013.02.012
- [Mat] Jiří Matoušek, Extension of Lipschitz mappings on metric trees, Comment. Math. Univ. Carolin. 31 (1990), no. 1, 99–104. MR 1056175
- [We] Nik Weaver, Lipschitz algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1999. MR 1832645
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46B20, 46B28, 46B50
Retrieve articles in all journals with MSC (2010): 46B20, 46B28, 46B50
Additional Information
Gilles Godefroy
Affiliation:
Institut de Mathématiques de Jussieu, 4 Place Jussieu, 75005 Paris, France
Email:
godefroy@math.jussieu.fr
Narutaka Ozawa
Affiliation:
RIMS, Kyoto University, 606-8502 Kyoto, Japan
Email:
narutaka@kurims.kyoto-u.ac.jp
DOI:
https://doi.org/10.1090/S0002-9939-2014-11933-2
Keywords:
Lipschitz free space,
approximation property
Received by editor(s):
January 4, 2012
Received by editor(s) in revised form:
June 18, 2012
Published electronically:
February 18, 2014
Communicated by:
Thomas Schlumprecht
Article copyright:
© Copyright 2014
American Mathematical Society