Weak amenability of commutative Beurling algebras
HTML articles powered by AMS MathViewer
- by Yong Zhang
- Proc. Amer. Math. Soc. 142 (2014), 1649-1661
- DOI: https://doi.org/10.1090/S0002-9939-2014-11955-1
- Published electronically: February 13, 2014
- PDF | Request permission
Abstract:
For a locally compact Abelian group $G$ and a continuous weight function $\omega$ on $G$ we show that the Beurling algebra $L^1(G, \omega )$ is weakly amenable if and only if there is no nontrivial continuous group homomorphism $\phi$: $G\to \mathbb {C}$ such that $\sup _{t\in G}\frac {|\phi (t)|}{\omega (t)\omega (t^{-1})} < \infty$. Let $\widehat \omega (t) = \limsup _{s\to \infty }\omega (ts)/\omega (s)$ ($t\in G$). Then $L^1(G, \omega )$ is $2$-weakly amenable if there is a constant $m> 0$ such that $\liminf _{n\to \infty }\frac {\omega (t^n)\widehat \omega (t^{-n})}{n} \leq m$ for all $t\in G$.References
- Ahmadreza Azimifard, Ebrahim Samei, and Nico Spronk, Amenability properties of the centres of group algebras, J. Funct. Anal. 256 (2009), no. 5, 1544–1564. MR 2490229, DOI 10.1016/j.jfa.2008.11.026
- W. G. Bade, P. C. Curtis Jr., and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. (3) 55 (1987), no. 2, 359–377. MR 896225, DOI 10.1093/plms/s3-55_{2}.359
- S. J. Bhatt and H. V. Dedania, A Beurling algebra is semisimple: an elementary proof, Bull. Austral. Math. Soc. 66 (2002), no. 1, 91–93. MR 1922610, DOI 10.1017/S0004972700020700
- Y. Choi, F. Ghahramani, and Y. Zhang, Approximate and pseudo-amenability of various classes of Banach algebras, J. Funct. Anal. 256 (2009), no. 10, 3158–3191. MR 2504522, DOI 10.1016/j.jfa.2009.02.012
- H. G. Dales, Banach algebras and automatic continuity, London Mathematical Society Monographs. New Series, vol. 24, The Clarendon Press, Oxford University Press, New York, 2000. Oxford Science Publications. MR 1816726
- H. G. Dales, F. Ghahramani, and N. Grønbæk, Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998), no. 1, 19–54. MR 1489459
- H. G. Dales and A. T.-M. Lau, The second duals of Beurling algebras, Mem. Amer. Math. Soc. 177 (2005), no. 836, vi+191. MR 2155972, DOI 10.1090/memo/0836
- G. I. Gaudry, Multipliers of weighted Lebesgue and measure spaces, Proc. London Math. Soc. (3) 19 (1969), 327–340. MR 243000, DOI 10.1112/plms/s3-19.2.327
- F. Ghahramani and G. Zabandan, 2-weak amenability of a Beurling algebra and amenability of its second dual, Int. J. Pure Appl. Math. 16 (2004), no. 1, 75–86. MR 2095738
- Niels Grønbæk, Commutative Banach algebras, module derivations, and semigroups, J. London Math. Soc. (2) 40 (1989), no. 1, 137–157. MR 1028919, DOI 10.1112/jlms/s2-40.1.137
- Niels Groenbaek, A characterization of weakly amenable Banach algebras, Studia Math. 94 (1989), no. 2, 149–162. MR 1025743, DOI 10.4064/sm-94-2-149-162
- Niels Grønbæk, Amenability of weighted convolution algebras on locally compact groups, Trans. Amer. Math. Soc. 319 (1990), no. 2, 765–775. MR 962282, DOI 10.1090/S0002-9947-1990-0962282-5
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
- Barry Edward Johnson, Cohomology in Banach algebras, Memoirs of the American Mathematical Society, No. 127, American Mathematical Society, Providence, R.I., 1972. MR 0374934
- B. E. Johnson, Weak amenability of group algebras, Bull. London Math. Soc. 23 (1991), no. 3, 281–284. MR 1123339, DOI 10.1112/blms/23.3.281
- Viktor Losert, The derivation problem for group algebras, Ann. of Math. (2) 168 (2008), no. 1, 221–246. MR 2415402, DOI 10.4007/annals.2008.168.221
- Ebrahim Samei, Weak amenability and 2-weak amenability of Beurling algebras, J. Math. Anal. Appl. 346 (2008), no. 2, 451–467. MR 2431541, DOI 10.1016/j.jmaa.2008.05.085
Bibliographic Information
- Yong Zhang
- Affiliation: Department of Mathematics, University of Manitoba, Winnipeg R3T 2N2, Canada
- ORCID: 0000-0002-0440-6396
- Email: zhangy@cc.umanitoba.ca
- Received by editor(s): March 20, 2012
- Received by editor(s) in revised form: June 7, 2012
- Published electronically: February 13, 2014
- Additional Notes: The author was supported by NSERC 238949-2011.
- Communicated by: Thomas Schlumprecht
- © Copyright 2014 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 142 (2014), 1649-1661
- MSC (2010): Primary 46H20, 43A20; Secondary 43A10
- DOI: https://doi.org/10.1090/S0002-9939-2014-11955-1
- MathSciNet review: 3168471