A note on joint reductions and mixed multiplicities
HTML articles powered by AMS MathViewer
- by Duong Quoc Viet, Le Van Dinh and Truong Thi Hong Thanh
- Proc. Amer. Math. Soc. 142 (2014), 1861-1873
- DOI: https://doi.org/10.1090/S0002-9939-2014-11916-2
- Published electronically: February 28, 2014
- PDF | Request permission
Abstract:
Let $(A, \frak m)$ be a noetherian local ring with maximal ideal $\frak {m}$ and infinite residue field $k = A/\frak {m}.$ Let $J$ be an $\frak m$-primary ideal, $I_1,\ldots ,I_s$ ideals of $A$, and $M$ a finitely generated $A$-module. In this paper, we interpret mixed multiplicities of $(I_1,\ldots , I_s,J)$ with respect to $M$ as multiplicities of joint reductions of them. This generalizes Rees’s theorem on mixed multiplicity. As an application we show that mixed multiplicities are also multiplicities of Rees superficial sequences.References
- Maurice Auslander and David A. Buchsbaum, Codimension and multiplicity, Ann. of Math. (2) 68 (1958), 625–657. MR 99978, DOI 10.2307/1970159
- R. Callejas-Bedregal and V. H. Jorge Pérez, Mixed multiplicities and the minimal number of generator of modules, J. Pure Appl. Algebra 214 (2010), no. 9, 1642–1653. MR 2593690, DOI 10.1016/j.jpaa.2009.12.009
- Le Van Dinh and Duong Quoc Viet, On two results of mixed multiplicities, Int. J. Algebra 4 (2010), no. 1-4, 19–23. MR 2577450
- Manfred Herrmann, Eero Hyry, Jürgen Ribbe, and Zhongming Tang, Reduction numbers and multiplicities of multigraded structures, J. Algebra 197 (1997), no. 2, 311–341. MR 1483767, DOI 10.1006/jabr.1997.7128
- Craig Huneke and Irena Swanson, Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note Series, vol. 336, Cambridge University Press, Cambridge, 2006. MR 2266432
- Daniel Katz and J. K. Verma, Extended Rees algebras and mixed multiplicities, Math. Z. 202 (1989), no. 1, 111–128. MR 1007742, DOI 10.1007/BF01180686
- D. Kirby and D. Rees, Multiplicities in graded rings. I. The general theory, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 209–267. MR 1266185, DOI 10.1090/conm/159/01510
- D. Kirby and D. Rees, Multiplicities in graded rings. II. Integral equivalence and the Buchsbaum-Rim multiplicity, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 3, 425–445. MR 1357056, DOI 10.1017/S0305004100074326
- Nguyên Tiên Mạnh and Duong Quôc Việt, Mixed multiplicities of modules over Noetherian local rings, Tokyo J. Math. 29 (2006), no. 2, 325–345. MR 2284976, DOI 10.3836/tjm/1170348171
- D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cambridge Philos. Soc. 50 (1954), 145–158. MR 59889, DOI 10.1017/s0305004100029194
- Liam O’Carroll, On two theorems concerning reductions in local rings, J. Math. Kyoto Univ. 27 (1987), no. 1, 61–67. MR 878490, DOI 10.1215/kjm/1250520764
- D. Rees, Generalizations of reductions and mixed multiplicities, J. London Math. Soc. (2) 29 (1984), no. 3, 397–414. MR 754926, DOI 10.1112/jlms/s2-29.3.397
- Paul Roberts, Local Chern classes, multiplicities, and perfect complexes, Mém. Soc. Math. France (N.S.) 38 (1989), 145–161. Colloque en l’honneur de Pierre Samuel (Orsay, 1987). MR 1044350
- Irena Swanson, Mixed multiplicities, joint reductions and quasi-unmixed local rings, J. London Math. Soc. (2) 48 (1993), no. 1, 1–14. MR 1223888, DOI 10.1112/jlms/s2-48.1.1
- Bernard Teissier, Cycles évanescents, sections planes et conditions de Whitney, Singularités à Cargèse (Rencontre Singularités Géom. Anal., Inst. Études Sci., Cargèse, 1972) Astérisque, Nos. 7 et 8, Soc. Math. France, Paris, 1973, pp. 285–362 (French). MR 0374482
- Ngo Viet Trung and Jugal Verma, Mixed multiplicities of ideals versus mixed volumes of polytopes, Trans. Amer. Math. Soc. 359 (2007), no. 10, 4711–4727. MR 2320648, DOI 10.1090/S0002-9947-07-04054-8
- J. K. Verma, Multigraded Rees algebras and mixed multiplicities, J. Pure Appl. Algebra 77 (1992), no. 2, 219–228. MR 1149023, DOI 10.1016/0022-4049(92)90087-V
- Duong Quôc Việt, Mixed multiplicities of arbitrary ideals in local rings, Comm. Algebra 28 (2000), no. 8, 3803–3821. MR 1767591, DOI 10.1080/00927870008827059
- Duong Quôc Việt, On some properties of (FC)-sequences of ideals in local rings, Proc. Amer. Math. Soc. 131 (2003), no. 1, 45–53. MR 1929022, DOI 10.1090/S0002-9939-02-06526-7
- Duong Quôc Viêt, Sequences determining mixed multiplicities and reductions of ideals, Comm. Algebra 31 (2003), no. 10, 5047–5069. MR 1998043, DOI 10.1081/AGB-120023147
- Duong Quôc Viêt, Reductions and mixed multiplicities of ideals, Comm. Algebra 32 (2004), no. 11, 4159–4178. MR 2102443, DOI 10.1081/AGB-200034021
- Duong Quoc Viet and Nguyen Tien Manh, Mixed multiplicities of multigraded modules, Forum Math. 25 (2013), no. 2, 337–361. MR 3031788, DOI 10.1515/form.2011.120
- Duong Quoc Viet and Truong Thi Hong Thanh, On (FC)-sequences and mixed multiplicities of multi-graded algebras, Tokyo J. Math. 34 (2011), no. 1, 185–202. MR 2866642, DOI 10.3836/tjm/1313074450
- D. Q. Viet and T. T. H. Thanh, On some multiplicity and mixed multiplicity formulas, Forum Math. 2011. DOI: 10.1515/FORM. 2011.168.
Bibliographic Information
- Duong Quoc Viet
- Affiliation: Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy Street, Hanoi, Vietnam
- Email: duongquocviet@fmail.vnn.vn
- Le Van Dinh
- Affiliation: Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy Street, Hanoi, Vietnam
- Email: dinhlevands@gmail.com
- Truong Thi Hong Thanh
- Affiliation: Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy Street, Hanoi, Vietnam
- Email: thanhtth@hnue.edu.vn
- Received by editor(s): February 29, 2012
- Received by editor(s) in revised form: June 30, 2012
- Published electronically: February 28, 2014
- Additional Notes: This research was partially supported by a grant from NAFOSTED
- Communicated by: Irena Peeva
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 142 (2014), 1861-1873
- MSC (2010): Primary 13H15; Secondary 14C17, 13D40, 13C15
- DOI: https://doi.org/10.1090/S0002-9939-2014-11916-2
- MathSciNet review: 3182007