Limit cycles bifurcating from a non-isolated zero-Hopf equilibrium of three-dimensional differential systems
HTML articles powered by AMS MathViewer
- by Jaume Llibre and Dongmei Xiao
- Proc. Amer. Math. Soc. 142 (2014), 2047-2062
- DOI: https://doi.org/10.1090/S0002-9939-2014-11923-X
- Published electronically: March 12, 2014
- PDF | Request permission
Abstract:
In this paper we study the limit cycles bifurcating from a non-isolated zero-Hopf equilibrium of a differential system in $\mathbb {R}^3$. The unfolding of the vector fields with a non-isolated zero-Hopf equilibrium is a family with at least three parameters. By using analysis techniques and the averaging theory of the second order, explicit conditions are given for the existence of one or two limit cycles bifurcating from such a zero-Hopf equilibrium. This result is applied to study three-dimensional generalized Lotka-Volterra systems in a paper by Bobieński and Żołądek (2005). The necessary and sufficient conditions for the existence of a non-isolated zero-Hopf equilibrium of this system are given, and it is shown that two limit cycles can be bifurcated from the non-isolated zero-Hopf equilibrium under a general small perturbation of three-dimensional generalized Lotka-Volterra systems.References
- A. Arneodo, P. Coullet, and C. Tresser, Occurrence of strange attractors in three-dimensional Volterra equations, Phys. Lett. A 79 (1980), no. 4, 259–263. MR 590579, DOI 10.1016/0375-9601(80)90342-4
- Vladimir I. Arnold, Arnold’s problems, Springer-Verlag, Berlin; PHASIS, Moscow, 2004. Translated and revised edition of the 2000 Russian original; With a preface by V. Philippov, A. Yakivchik and M. Peters. MR 2078115
- Marcin Bobieński and Henryk Żołądek, The three-dimensional generalized Lotka-Volterra systems, Ergodic Theory Dynam. Systems 25 (2005), no. 3, 759–791. MR 2142944, DOI 10.1017/S0143385704000902
- Adriana Buică and Jaume Llibre, Averaging methods for finding periodic orbits via Brouwer degree, Bull. Sci. Math. 128 (2004), no. 1, 7–22. MR 2033097, DOI 10.1016/j.bulsci.2003.09.002
- A. R. Champneys and V. Kirk, The entwined wiggling of homoclinic curves emerging from saddle-node/Hopf instabilities, Phys. D 195 (2004), no. 1-2, 77–105. MR 2074637, DOI 10.1016/j.physd.2004.03.004
- L. Gardini, R. Lupini, and M. G. Messia, Hopf bifurcation and transition to chaos in Lotka-Volterra equation, J. Math. Biol. 27 (1989), no. 3, 259–272. MR 1000091, DOI 10.1007/BF00275811
- Mats Gyllenberg, Ping Yan, and Yi Wang, A 3D competitive Lotka-Volterra system with three limit cycles: a falsification of a conjecture by Hofbauer and So, Appl. Math. Lett. 19 (2006), no. 1, 1–7. MR 2189809, DOI 10.1016/j.aml.2005.01.002
- John Guckenheimer, On a codimension two bifurcation, Dynamical systems and turbulence, Warwick 1980 (Coventry, 1979/1980), Lecture Notes in Math., vol. 898, Springer, Berlin-New York, 1981, pp. 99–142. MR 654886
- John Guckenheimer and Philip Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1983. MR 709768, DOI 10.1007/978-1-4612-1140-2
- Morris W. Hirsch, Systems of differential equations that are competitive or cooperative. V. Convergence in $3$-dimensional systems, J. Differential Equations 80 (1989), no. 1, 94–106. MR 1003252, DOI 10.1016/0022-0396(89)90097-1
- Morris W. Hirsch, Systems of differential equations that are competitive or cooperative. IV. Structural stability in three-dimensional systems, SIAM J. Math. Anal. 21 (1990), no. 5, 1225–1234. MR 1062401, DOI 10.1137/0521067
- Josef Hofbauer and Karl Sigmund, Evolutionary games and population dynamics, Cambridge University Press, Cambridge, 1998. MR 1635735, DOI 10.1017/CBO9781139173179
- J. Hofbauer and J. W.-H. So, Multiple limit cycles for three-dimensional Lotka-Volterra equations, Appl. Math. Lett. 7 (1994), no. 6, 65–70. MR 1340732, DOI 10.1016/0893-9659(94)90095-7
- Yuri A. Kuznetsov, Elements of applied bifurcation theory, 3rd ed., Applied Mathematical Sciences, vol. 112, Springer-Verlag, New York, 2004. MR 2071006, DOI 10.1007/978-1-4757-3978-7
- M. R. May, Limit cycles in predator-prey communities, Science 177 (1972), 900–902.
- Robert M. May and Warren J. Leonard, Nonlinear aspects of competition between three species, SIAM J. Appl. Math. 29 (1975), no. 2, 243–253. MR 392035, DOI 10.1137/0129022
- Jaume Llibre, Ana Cristina Mereu, and Marco Antonio Teixeira, Limit cycles of the generalized polynomial Liénard differential equations, Math. Proc. Cambridge Philos. Soc. 148 (2010), no. 2, 363–383. MR 2600146, DOI 10.1017/S0305004109990193
- Jaume Llibre and Clàudia Valls, Hopf bifurcation for some analytic differential systems in $\Bbb R^3$ via averaging theory, Discrete Contin. Dyn. Syst. 30 (2011), no. 3, 779–790. MR 2784620, DOI 10.3934/dcds.2011.30.779
- N. G. Lloyd, Degree theory, Cambridge Tracts in Mathematics, No. 73, Cambridge University Press, Cambridge-New York-Melbourne, 1978. MR 0493564
- Zhengyi Lu and Yong Luo, Three limit cycles for a three-dimensional Lotka-Volterra competitive system with a heteroclinic cycle, Comput. Math. Appl. 46 (2003), no. 2-3, 231–238. MR 2015434, DOI 10.1016/S0898-1221(03)90027-7
- Lawrence Perko, Differential equations and dynamical systems, 2nd ed., Texts in Applied Mathematics, vol. 7, Springer-Verlag, New York, 1996. MR 1418638, DOI 10.1007/978-1-4684-0249-0
- J. A. Sanders and F. Verhulst, Averaging methods in nonlinear dynamical systems, Applied Mathematical Sciences, vol. 59, Springer-Verlag, New York, 1985. MR 810620, DOI 10.1007/978-1-4757-4575-7
- Jürgen Scheurle and Jerrold Marsden, Bifurcation to quasiperiodic tori in the interaction of steady state and Hopf bifurcations, SIAM J. Math. Anal. 15 (1984), no. 6, 1055–1074. MR 762963, DOI 10.1137/0515082
- S. Smale, On the differential equations of species in competition, J. Math. Biol. 3 (1976), no. 1, 5–7. MR 406579, DOI 10.1007/BF00307854
- J. A. Vano, J. C. Wildenberg, M. B. Anderson, J. K. Noel, and J. C. Sprott, Chaos in low-dimensional Lotka-Volterra models of competition, Nonlinearity 19 (2006), no. 10, 2391–2404. MR 2260268, DOI 10.1088/0951-7715/19/10/006
- Ferdinand Verhulst, Nonlinear differential equations and dynamical systems, 2nd ed., Universitext, Springer-Verlag, Berlin, 1996. Translated from the 1985 Dutch original. MR 1422255, DOI 10.1007/978-3-642-61453-8
- Ruiping Wang and Dongmei Xiao, Bifurcations and chaotic dynamics in a 4-dimensional competitive Lotka-Volterra system, Nonlinear Dynam. 59 (2010), no. 3, 411–422. MR 2592924, DOI 10.1007/s11071-009-9547-3
- Dongmei Xiao and Wenxia Li, Limit cycles for the competitive three dimensional Lotka-Volterra system, J. Differential Equations 164 (2000), no. 1, 1–15. MR 1761415, DOI 10.1006/jdeq.1999.3729
- E. C. Zeeman and M. L. Zeeman, From local to global behavior in competitive Lotka-Volterra systems, Trans. Amer. Math. Soc. 355 (2003), no. 2, 713–734. MR 1932722, DOI 10.1090/S0002-9947-02-03103-3
- M. L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems, Dynam. Stability Systems 8 (1993), no. 3, 189–217. MR 1246002, DOI 10.1080/02681119308806158
Bibliographic Information
- Jaume Llibre
- Affiliation: Departament de Matemátiques, Universitat Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain
- MR Author ID: 115015
- ORCID: 0000-0002-9511-5999
- Email: jllibre@mat.uab.cat
- Dongmei Xiao
- Affiliation: Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
- MR Author ID: 256353
- Email: xiaodm@sjtu.edu.cn
- Received by editor(s): November 12, 2011
- Received by editor(s) in revised form: July 4, 2012
- Published electronically: March 12, 2014
- Additional Notes: The first author was supported by the grants MEC/FEDER MTM 2008-03437, CIRIT 2009SGR 410 and ICREA Academia
The second author was supported by the National Natural Science Foundations of China numbers 10831003 and 10925102 and the Program of Shanghai Subject Chief Scientists number 10XD1406200. - Communicated by: Yingfei Yi
- © Copyright 2014 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 142 (2014), 2047-2062
- MSC (2010): Primary 37N25, 34C12, 34C28, 37G20
- DOI: https://doi.org/10.1090/S0002-9939-2014-11923-X
- MathSciNet review: 3182024