On fields with Property (B)
HTML articles powered by AMS MathViewer
- by Francesco Amoroso, Sinnou David and Umberto Zannier
- Proc. Amer. Math. Soc. 142 (2014), 1893-1910
- DOI: https://doi.org/10.1090/S0002-9939-2014-11925-3
- Published electronically: March 3, 2014
- PDF | Request permission
Abstract:
Let $K$ be a number field and let $L/K$ be an infinite Galois extension with Galois group $G$. Let us assume that $G/Z(G)$ has finite exponent. We show that $L$ has the Property (B) of Bombieri and Zannier: the absolute and logarithmic Weil height on $L^*$ is bounded from below outside the set of roots of unity by an absolute constant. We also discuss some features of Property (B): stability by algebraic extensions and relations with field arithmetic. As a side result, we prove that the Galois group over $\mathbb {Q}$ of the compositum of all totally real fields is torsion free.References
- Francesco Amoroso and Sinnou David, Minoration de la hauteur normalisée dans un tore, J. Inst. Math. Jussieu 2 (2003), no. 3, 335–381 (French, with English and French summaries). MR 1990219, DOI 10.1017/S1474748003000094
- Francesco Amoroso and Roberto Dvornicich, A lower bound for the height in abelian extensions, J. Number Theory 80 (2000), no. 2, 260–272. MR 1740514, DOI 10.1006/jnth.1999.2451
- Francesco Amoroso and Filippo A. E. Nuccio, Algebraic numbers of small Weil’s height in CM-fields: on a theorem of Schinzel, J. Number Theory 122 (2007), no. 1, 247–260. MR 2287122, DOI 10.1016/j.jnt.2006.04.005
- Francesco Amoroso and Umberto Zannier, A relative Dobrowolski lower bound over abelian extensions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), no. 3, 711–727. MR 1817715
- Francesco Amoroso and Umberto Zannier, A uniform relative Dobrowolski’s lower bound over abelian extensions, Bull. Lond. Math. Soc. 42 (2010), no. 3, 489–498. MR 2651944, DOI 10.1112/blms/bdq008
- Emil Artin, Collected papers, Springer-Verlag, New York-Berlin, 1982. Edited by Serge Lang and John T. Tate; Reprint of the 1965 original. MR 671416
- Reihold Baer, Die Automorphismengruppe eines algebraisch abgeschlossenen Körpers der Charakterkistik $0$, Math. Z. 117 (1970), 7–17 (German). MR 272757, DOI 10.1007/BF01109822
- Matthew H. Baker and Joseph H. Silverman, A lower bound for the canonical height on abelian varieties over abelian extensions, Math. Res. Lett. 11 (2004), no. 2-3, 377–396. MR 2067482, DOI 10.4310/MRL.2004.v11.n3.a10
- Enrico Bombieri and Umberto Zannier, A note on heights in certain infinite extensions of $\Bbb Q$, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 12 (2001), 5–14 (2002) (English, with English and Italian summaries). MR 1898444
- Sara Checcoli, Fields of algebraic numbers with bounded local degrees and their properties, Trans. Amer. Math. Soc. 365 (2013), no. 4, 2223–2240. MR 3009657, DOI 10.1090/S0002-9947-2012-05712-6
- Sinnou David and Amílcar Pacheco, Le problème de Lehmer abélien pour un module de Drinfel′d, Int. J. Number Theory 4 (2008), no. 6, 1043–1067 (French, with English and French summaries). MR 2483311, DOI 10.1142/S1793042108001870
- E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), no. 4, 391–401. MR 543210, DOI 10.4064/aa-34-4-391-401
- Roberto Dvornicich and Umberto Zannier, On the properties of Northcott and of Narkiewicz for fields of algebraic numbers. part 1, Funct. Approx. Comment. Math. 39 (2008), no. part 1, 163–173. MR 2490096, DOI 10.7169/facm/1229696562
- Michael D. Fried, Dan Haran, and Helmut Völklein, Absolute Galois group of the totally real numbers, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 11, 995–999 (English, with English and French summaries). MR 1249777
- Michael D. Fried and Moshe Jarden, Field arithmetic, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 11, Springer-Verlag, Berlin, 2008. Revised by Jarden. MR 2445111
- P. Habegger, Small height and infinite non-Abelian extensions, Duke Math. J. 162 (2013), no. 11, 2027–2076.
- Moshe Jarden and Aharon Razon, Pseudo algebraically closed fields over rings, Israel J. Math. 86 (1994), no. 1-3, 25–59. MR 1276130, DOI 10.1007/BF02773673
- Kenzo Komatsu, On the Galois group of $x^p+ax+a=0$, Tokyo J. Math. 14 (1991), no. 1, 227–229. MR 1108169, DOI 10.3836/tjm/1270130502
- Serge Lang, Algebra, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR 1878556, DOI 10.1007/978-1-4613-0041-0
- D. H. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. (2) 34 (1933), no. 3, 461–479. MR 1503118, DOI 10.2307/1968172
- Patrice Philippon and Martín Sombra, Minimum essentiel et degrés d’obstruction des translatés de sous-tores, Acta Arith. 133 (2008), no. 1, 1–24 (French). MR 2413362, DOI 10.4064/aa133-1-1
- Florian Pop, Embedding problems over large fields, Ann. of Math. (2) 144 (1996), no. 1, 1–34. MR 1405941, DOI 10.2307/2118581
- A. R. Rajwade, Squares, London Mathematical Society Lecture Note Series, vol. 171, Cambridge University Press, Cambridge, 1993. MR 1253071, DOI 10.1017/CBO9780511566028
- Nicolas Ratazzi, Théorème de Dobrowolski-Laurent pour les extensions abéliennes sur une courbe elliptique à multiplication complexe, Int. Math. Res. Not. 58 (2004), 3121–3152 (French). MR 2098701, DOI 10.1155/S1073792804140518
- G. Rémond, Généralisations du problème de Lehmer et applications à la conjecture de Zilber-Pink, to appear, Séminaires et congrès.
- Paulo Ribenboim, L’arithmétique des corps, Hermann, Paris, 1972 (French). MR 0330093
- A. Schinzel, On the product of the conjugates outside the unit circle of an algebraic number, Acta Arith. 24 (1973), 385–399. MR 360515, DOI 10.4064/aa-24-4-385-399
- C. J. Smyth, On the measure of totally real algebraic integers, J. Austral. Math. Soc. Ser. A 30 (1980/81), no. 2, 137–149. MR 607924, DOI 10.1017/S1446788700016426
- Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR 718674, DOI 10.1007/978-1-4684-0133-2
Bibliographic Information
- Francesco Amoroso
- Affiliation: Laboratoire de mathématiques Nicolas Oresme, CNRS UMR 6139, Université de Caen, Campus II, BP 5186, 14032 Caen Cedex, France
- Sinnou David
- Affiliation: Institut de Mathématiques, CNRS UMR 7586, Université Pierre et Marie Curie, 4, place Jussieu, 75252 Paris Cedex 05, France
- Umberto Zannier
- Affiliation: Scuola Normale Superiore, Piazza dei Cavalieri, 56126 Pisa, Italy
- MR Author ID: 186540
- Received by editor(s): January 18, 2012
- Received by editor(s) in revised form: July 4, 2012
- Published electronically: March 3, 2014
- Additional Notes: The first and second authors were partially supported by ANR “HaMoT”
The third author was partially supported by ERC “Diophantine Problems” - Communicated by: Matthew A. Papanikolas
- © Copyright 2014 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 142 (2014), 1893-1910
- MSC (2010): Primary 11G50; Secondary 12E30
- DOI: https://doi.org/10.1090/S0002-9939-2014-11925-3
- MathSciNet review: 3182009