Depth of factors of square free monomial ideals
HTML articles powered by AMS MathViewer
- by Dorin Popescu
- Proc. Amer. Math. Soc. 142 (2014), 1965-1972
- DOI: https://doi.org/10.1090/S0002-9939-2014-11939-3
- Published electronically: March 11, 2014
- PDF | Request permission
Abstract:
Let $I$ be an ideal of a polynomial algebra over a field generated by $r$ square free monomials of degree $d$. If $r$ is bigger than (or equal to, if $I$ is not principal) the number of square free monomials of $I$ of degree $d+1$, then $\mathrm {depth}_SI= d$. Let $J\subsetneq I$, $J\not =0$ be generated by square free monomials of degree $\geq d+1$. If $r$ is bigger than the number of square free monomials of $I\setminus J$ of degree $d+1$ or, more generally, the Stanley depth of $I/J$ is $d$, then $\mathrm {depth}_SI/J= d$. In particular, Stanley’s Conjecture holds in these cases.References
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- Jürgen Herzog, Marius Vladoiu, and Xinxian Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra 322 (2009), no. 9, 3151–3169. MR 2567414, DOI 10.1016/j.jalgebra.2008.01.006
- Jürgen Herzog, Dorin Popescu, and Marius Vladoiu, Stanley depth and size of a monomial ideal, Proc. Amer. Math. Soc. 140 (2012), no. 2, 493–504. MR 2846317, DOI 10.1090/S0002-9939-2011-11160-2
- Muhammad Ishaq, Upper bounds for the Stanley depth, Comm. Algebra 40 (2012), no. 1, 87–97. MR 2876290, DOI 10.1080/00927872.2010.523642
- Adrian Popescu, Special Stanley decompositions, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 53(101) (2010), no. 4, 363–372. MR 2777680
- Dorin Popescu, An inequality between depth and Stanley depth, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 52(100) (2009), no. 3, 377–382. MR 2554495
- Dorin Popescu, The Stanley conjecture on intersections of four monomial prime ideals, Comm. Algebra 41 (2013), no. 11, 4351–4362. MR 3169523, DOI 10.1080/00927872.2012.699568
- Dorin Popescu, Bounds of Stanley depth, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 19 (2011), no. 2, 187–194. MR 2794292
- Dorin Popescu, Depth and minimal number of generators of square free monomial ideals, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 19 (2011), no. 3, 163–166. MR 2879095
- Yi-Huang Shen, When will the Stanley depth increase?, Proc. Amer. Math. Soc. 141 (2013), no. 7, 2265–2274. MR 3043008, DOI 10.1090/S0002-9939-2013-12003-4
- Richard P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math. 68 (1982), no. 2, 175–193. MR 666158, DOI 10.1007/BF01394054
- J. H. van Lint and R. M. Wilson, A course in combinatorics, 2nd ed., Cambridge University Press, Cambridge, 2001. MR 1871828, DOI 10.1017/CBO9780511987045
- Andrei Zarojanu, Stanley conjecture on intersection of three monomial primary ideals, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 55(103) (2012), no. 3, 335–339. MR 2987069
Bibliographic Information
- Dorin Popescu
- Affiliation: Simion Stoilow Institute of Mathematics of Romanian Academy, Research Unit 5, P.O. Box 1-764, Bucharest 014700, Romania
- Email: dorin.popescu@imar.ro
- Received by editor(s): June 3, 2012
- Received by editor(s) in revised form: July 12, 2012
- Published electronically: March 11, 2014
- Additional Notes: The author’s support from grant ID-PCE-2011-1023 of the Romanian Ministry of Education, Research and Innovation is gratefully acknowledged.
- Communicated by: Irena Peeva
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 142 (2014), 1965-1972
- MSC (2010): Primary 13C15; Secondary 13F20, 13F55, 13P10
- DOI: https://doi.org/10.1090/S0002-9939-2014-11939-3
- MathSciNet review: 3182015