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THE PROBLEM OF HORN AND TARSKI

EGBERT THÜMMEL

(Communicated by Julia Knight)

Abstract. In 1948 A. Horn and A. Tarski asked whether the notions of a
σ-finite cc and a σ-bounded cc ordering are equivalent. We give a negative
answer to this question.

When analyzing Boolean algebras carrying a measure, Horn and Tarski [HT48]
defined the following two notions:

Definition 1. An ordering P is called

(i) σ-bounded cc if P =
⋃

n∈ω

Pn, where each Pn has the n+ 2-cc.

(ii) σ-finite cc if P =
⋃

n∈ω

Pn, where each Pn has the ω-cc.

Here an ordering or its subset has the κ-cc (κ-chain condition) for a cardinal κ if it
contains no antichain (set of pairwise orthogonal elements) of size κ.

Clearly, any σ-bounded cc ordering is σ-finite cc (and both are ω1-cc; also called
ccc). Horn and Tarski asked whether these two classes coincide:

Problem: A. Horn and A. Tarski 1948 ([HT48]). Is every σ-finite cc ordering
also σ-bounded cc?

There is a standard way to map an ordering densely into a complete Boolean
algebra. This mapping preserves our two properties. The problem of Horn and
Tarski can therefore be formulated in terms of Boolean algebras as well. It is easy
to see that a Boolean algebra carrying a strictly positive measure is σ-bounded cc
(take as Pn the set of elements of measure at least 1/n). If the Boolean algebra
carries only a strictly positive exhaustive submeasure this property could get lost,
but still the Boolean algebra will be σ-finite cc (take the same Pn). The question
of whether any Boolean algebra carrying a strictly positive exhaustive submeasure
also carries a strictly positive measure is one formulation of the famous control
measure problem. It was therefore expected that an anticipated negative solution
of this problem will give also a counterexample to the problem of Horn and Tarski.
But when such an example solving the Control measure problem was constructed
by M. Talagrand ([Tal08]) it turned out that it is even σ-bounded cc, so the problem
of Horn and Tarski remained open. We will construct here a counterexample to the
problem of Horn and Tarski.
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Theorem 1. There exists an ordering which is σ-finite cc but not σ-bounded cc.

The technique used in the construction appeared first in [Tod91] and is further
developed in [BPT]:

For a subset F of a topological space X, let F d denote the set of all accumulation
points.

Definition 2. For a topological space X the Todorčević ordering T(X) is the set of
all subsets F of the space which are a finite union of converging sequences including
their limit points. The order relation is defined by such extensions which preserve
isolated points, i.e. F1 ≤ F2 if F1 ⊇ F2 and F d

1 ∩ F2 = F d
2 .

We start with the set T =
⋃

α<ω1

α+1ω. This set is made into a tree by the order
of inclusion. We will extend the order of the tree into a linear one. Define the order
≤ on T by s < t if either s ⊂ t or s(β) > t(β) for β = min{γ : s(γ) �= t(γ)}.
Note that, for any point of the tree T , the set of immediate successors in the tree
is of type ω∗ in the linear order <, i.e. ω ordered in the reverse. Take the interval
topology τ≤ on T . We apply the operator T on this linearly ordered topological
space (T, τ≤) to obtain the Todorčević ordering P = T(T ). This will be the example
which proves the theorem:

Claim 1. P is not σ-bounded cc.

Proof. Assume by contradiction that P =
⋃

n∈ω Pn, with each Pn being n + 2-cc,
witnesses that P is σ-bounded cc. For n < ω define functions fn : T −→ n + 2
such that fn(s) is the maximal length of an antichain which is a subset of the set
Pn(s) = {F ∈ Pn : ∃t ∈ F d(t ⊇ s)}. The function fn is decreasing with respect
to ⊆. It follows that for any s ∈ T there is an s′ ⊇ s such that fn(s

′) = fn(t)
for all t ⊇ s′. We find an increasing (with respect to ⊆) sequence {sn} such that
fn(sn) = fn(t) for all t ⊇ sn. For an arbitrary s ∈ T with s ⊃

⋃
n<ω sn we have

therefore fn(s) = fn(t) for all t ⊇ s and n < ω. Fix such an s and let f(n) = fn(s).
For n < ω choose in Pn(s

�n) an antichain {Fn,i}i<f(n) and tn,i ⊇ s�n such that

tn,i ∈ (Fn,i)
d for i < f(n). Then {tn,i}n<ω,i<f(n) converges to s (if not finite)

and so does {s�n}n<ω, i.e. F = {tn,i}n<ω,i<f(n) ∪ {s�n}n<ω ∪ {s} ∈ P. Notice
that F is orthogonal to all Fn,i for n < ω and i < f(n) since tn,i is isolated in
F and an accumulation point in Fn,i. But F has to be contained in some Pn,
hence {Fn,i}i<f(n) ∪ {F} is an antichain in Pn(s) and therefore fn(s) ≥ f(n) + 1,
a contradiction. �

Claim 2. P is σ-finite cc.

Proof. We argue in the order ≤. The set {s�k}k<ω is a decreasing sequence with
infimum s. We can therefore for any F ∈ P fix a k(F ) < ω such that, for s ∈ F d,
the open intervals (s, s�k(F )) are disjoint from F d. No increasing sequence of
(T,≤) has a supremum. This means that any sequence which converges to s is
above s with the possible exception of finitely many elements. Therefore R(F ) =
F\

(⋃
s∈Fd(s, s�k(F )) ∪ F d

)
is finite. Let

Pk,n,m = {F ∈ P : k(F ) = k & |F d| = n & |R(F )| = m}.
Surely P =

⋃
k,n,m<ω Pk,n,m. We have to show that all Pk,n,m’s are finite cc.

Assume by contradiction that {Fi}i<ω ⊂ Pk̄,n̄,m̄ is an infinite antichain for some

fixed k̄, n̄, m̄. Let (Fi)
d = {sni }n<n̄ and R(Fi) = {rmi }m<m̄ be enumerated and
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put Fn
i = Fi ∩ (sni , s

n
i

�k̄). Then Fn
i is a sequence with limit sni and Fi\(Fi)

d =⋃
n<n̄ F

n
i ∪ {rmi }m<m̄ is the set of isolated points of Fi. We say that {i, j} ∈ [ω]2,

i < j, has color

(1, n, n′) if sni ∈ Fn′

j ,

(2, n,m) if sni = rmj ,

(3, n, n′) if snj ∈ Fn′

i ,

(4, n,m) if snj = rmi

for n, n′ < n̄ and m < m̄. Since {Fi}i<ω was assumed to be an antichain, there
must be for any {i, j} ∈ [ω]2 a point which is isolated in Fi and not isolated in Fj or
vice versa, i.e. any pair {i, j} obtains at least one color. Ramsey’s theorem asserts
that there must be an infinite subset of ω which is homogeneous in one color. For
notational convenience, we assume that ω itself is this homogeneous set. We are
going to derive a contradiction for each of the colors.

1. ω is homogeneous in color (1, n, n′).

Note that s ∈ (t, t�k̄) implies s ⊃ t and (s, s�k̄) ⊂ (t, t�k̄).
Homogeneity in color (1, n, n′) implies sni ∈ Fn′

j ⊆ (sn
′

j , sn
′

j
�k̄), i.e. sni ⊃ sn

′

j for

all i < j. We have sni−1 ⊃ sn
′

i , sn
′

i+1, hence sn
′

i ⊆ sn
′

i+1 or sn
′

i ⊃ sn
′

i+1. Consider the

first case. The order ≤ is stronger than ⊆, therefore sn
′

i ≤ sn
′

i+1 < sni−1 ∈ Fn′

i ⊆
(sn

′

i , sn
′

i
�k̄). The latter is an interval, hence sn

′

i+1 = sn
′

i or sn
′

i+1 ∈ (sn
′

i , sn
′

i
�k̄),

and therefore (sn
′

i+1, s
n′

i+1
�k̄) ⊆ (sn

′

i , sn
′

i
�k̄). But sni /∈ (sn

′

i , sn
′

i
�k̄). This follows

from the definition of k̄ = k(Fi) at the beginning of the proof. On the other hand,

sni ∈ Fn′

i+1 ⊆ (sn
′

i+1, s
n′

i+1
�k̄) by homogeneity, a contradiction. So the second case

sn
′

i ⊃ sn
′

i+1 must hold for all i < ω, i.e. the sn
′

i ’s are a strictly decreasing sequence
in the tree T , again a contradiction.

2. ω is homogeneous in color (2, n,m).

From sn1 = rm2 and sn0 = rm2 and sn0 = rm1 (homogeneity in color (2, n,m)) we
conclude sn1 = rm1 , a contradiction since sn1 is an accumulation point in F1 and rm1
is isolated in F1.

3. ω is homogeneous in color (3, n, n′).

Assume that there are i < j such that sni = snj . Then sni = snj ∈ Fn′

i , but

sni is an accumulation point of Fi whereas Fn′

i contains only isolated points of
Fi, a contradiction. So the snj ’s are pairwise different for j < ω. Homogeneity

in color (3, n, n′) implies that all snj , j > 0, are in Fn′

0 ; the set {snj }ωj=1 therefore

converges to sn
′

0 . By the same argument, we obtain that {snj }ωj=2 converges to sn
′

1 ,

hence sn
′

0 = sn
′

1 . Again by homogeneity sn1 ∈ Fn′

0 ⊆ (sn
′

0 , sn
′

0
�k̄) = (sn

′

1 , sn
′

1
�k̄) , a

contradiction since sn1 /∈ (sn
′

1 , sn
′

1
�k̄) by definition of k̄ = k(F1).

4. ω is homogeneous in color (4, n,m).

The same as color (2, n,m).
For all the colors we obtained a contradiction, so an infinite antichain cannot

exist. �
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[Tod91] Stevo Todorčević, Two examples of Borel partially ordered sets with the countable chain

condition, Proc. Amer. Math. Soc. 112 (1991), no. 4, 1125–1128, DOI 10.2307/2048663.
MR1069693 (91j:03065)
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