Mehler–Heine formulas for orthogonal polynomials with respect to the modified Jacobi weight
HTML articles powered by AMS MathViewer
- by Bujar Xh. Fejzullahu
- Proc. Amer. Math. Soc. 142 (2014), 2035-2045
- DOI: https://doi.org/10.1090/S0002-9939-2014-11976-9
- Published electronically: February 27, 2014
- PDF | Request permission
Abstract:
In this paper the ladder operator approach has been applied to deduce the Mehler–Heine type formulas for orthogonal polynomials with respect to the modified Jacobi weight \[ \omega _{\alpha ,\beta ,h}(x)=h(x) (1-x)^\alpha (1+x)^\beta , \hspace {0.5cm} x\in [-1,1],\] where $\alpha ,\beta >0,$ and with $h$ real analytic and strictly positive on $[-1, 1].$References
- A. I. Aptekarev, Asymptotics of orthogonal polynomials in a neighborhood of endpoints of the interval of orthogonality, Mat. Sb. 183 (1992), no. 5, 43–62 (Russian, with Russian summary); English transl., Russian Acad. Sci. Sb. Math. 76 (1993), no. 1, 35–50. MR 1184309, DOI 10.1070/SM1993v076n01ABEH003400
- A. I. Aptekarev, V. S. Buyarov, and I. S. Degeza, Asymptotic behavior of $L^p$-norms and entropy for general orthogonal polynomials, Mat. Sb. 185 (1994), no. 8, 3–30 (Russian, with Russian summary); English transl., Russian Acad. Sci. Sb. Math. 82 (1995), no. 2, 373–395. MR 1302621, DOI 10.1070/SM1995v082n02ABEH003571
- Estelle Basor, Yang Chen, and Torsten Ehrhardt, Painlevé V and time-dependent Jacobi polynomials, J. Phys. A 43 (2010), no. 1, 015204, 25. MR 2570057, DOI 10.1088/1751-8113/43/1/015204
- William C. Bauldry, Estimates of asymmetric Freud polynomials on the real line, J. Approx. Theory 63 (1990), no. 2, 225–237. MR 1079852, DOI 10.1016/0021-9045(90)90105-Y
- Stanford Bonan and Paul Nevai, Orthogonal polynomials and their derivatives. I, J. Approx. Theory 40 (1984), no. 2, 134–147. MR 732695, DOI 10.1016/0021-9045(84)90023-6
- Stanford S. Bonan and Dean S. Clark, Estimates of the orthogonal polynomials with weight $\textrm {exp}(-x^m),\;m$ an even positive integer, J. Approx. Theory 46 (1986), no. 4, 408–410. MR 842802, DOI 10.1016/0021-9045(86)90074-2
- Yang Chen and Mourad E. H. Ismail, Ladder operators and differential equations for orthogonal polynomials, J. Phys. A 30 (1997), no. 22, 7817–7829. MR 1616931, DOI 10.1088/0305-4470/30/22/020
- Yang Chen and Mourad Ismail, Jacobi polynomials from compatibility conditions, Proc. Amer. Math. Soc. 133 (2005), no. 2, 465–472. MR 2093069, DOI 10.1090/S0002-9939-04-07566-5
- Yang Chen and Alexander Its, Painlevé III and a singular linear statistics in Hermitian random matrix ensembles. I, J. Approx. Theory 162 (2010), no. 2, 270–297. MR 2581382, DOI 10.1016/j.jat.2009.05.005
- P. Deift and X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math. (2) 137 (1993), no. 2, 295–368. MR 1207209, DOI 10.2307/2946540
- A. S. Fokas, A. R. It⋅s, and A. V. Kitaev, The isomonodromy approach to matrix models in $2$D quantum gravity, Comm. Math. Phys. 147 (1992), no. 2, 395–430. MR 1174420, DOI 10.1007/BF02096594
- A. Foulquié Moreno, A. Martínez-Finkelshtein, and V. L. Sousa, On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials, J. Approx. Theory 162 (2010), no. 4, 807–831. MR 2606647, DOI 10.1016/j.jat.2009.08.006
- Paul Koosis, Introduction to $H_{p}$ spaces, London Mathematical Society Lecture Note Series, vol. 40, Cambridge University Press, Cambridge-New York, 1980. With an appendix on Wolff’s proof of the corona theorem. MR 565451
- A. B. J. Kuijlaars, K. T.-R. McLaughlin, W. Van Assche, and M. Vanlessen, The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on $[-1,1]$, Adv. Math. 188 (2004), no. 2, 337–398. MR 2087231, DOI 10.1016/j.aim.2003.08.015
- Mourad E. H. Ismail and Jet Wimp, On differential equations for orthogonal polynomials, Methods Appl. Anal. 5 (1998), no. 4, 439–452. MR 1669843, DOI 10.4310/MAA.1998.v5.n4.a8
- J. Shohat, A differential equation for orthogonal polynomials, Duke Math. J. 5 (1939), no. 2, 401–417. MR 1546133, DOI 10.1215/S0012-7094-39-00534-X
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975. MR 0372517
- D. N. Tulyakov, Asymptotics of Plancherel-Rotach type for solutions of linear recurrence relations with rational coefficients, Mat. Sb. 201 (2010), no. 9, 111–158 (Russian, with Russian summary); English transl., Sb. Math. 201 (2010), no. 9-10, 1355–1402. MR 2760462, DOI 10.1070/SM2010v201n09ABEH004115
- M. Vanlessen, Strong asymptotics of the recurrence coefficients of orthogonal polynomials associated to the generalized Jacobi weight, J. Approx. Theory 125 (2003), no. 2, 198–237. MR 2019609, DOI 10.1016/j.jat.2003.11.005
- A. Zygmund, Trigonometric series: Vols. I, II, Cambridge University Press, London-New York, 1968. Second edition, reprinted with corrections and some additions. MR 0236587
Bibliographic Information
- Bujar Xh. Fejzullahu
- Affiliation: Faculty of Mathematics and Sciences, University of Prishtina, Mother Teresa 5, 10000 Prishtinë, Kosovë
- Email: bujarfe@yahoo.com
- Received by editor(s): February 5, 2012
- Received by editor(s) in revised form: June 28, 2012
- Published electronically: February 27, 2014
- Communicated by: Walter Van Assche
- © Copyright 2014 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 142 (2014), 2035-2045
- MSC (2010): Primary 42C05; Secondary 42C10
- DOI: https://doi.org/10.1090/S0002-9939-2014-11976-9
- MathSciNet review: 3182023