Codes and the Cartier operator
Author:
Alain Couvreur
Journal:
Proc. Amer. Math. Soc. 142 (2014), 1983-1996
MSC (2010):
Primary 11G20, 14G50, 94B27
DOI:
https://doi.org/10.1090/S0002-9939-2014-12011-9
Published electronically:
March 14, 2014
MathSciNet review:
3182017
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this article, we present a new construction of codes from algebraic curves. Given a curve over a non-prime finite field, the obtained codes are defined over a subfield. We call them Cartier codes since their construction involves the Cartier operator. This new class of codes can be regarded as a natural geometric generalisation of classical Goppa codes. In particular, we prove that a well-known property satisfied by classical Goppa codes extends naturally to Cartier codes. We prove general lower bounds for the dimension and the minimum distance of these codes and compare our construction with a classical one: the subfield subcodes of Algebraic Geometry codes. We prove that every Cartier code is contained in a subfield subcode of an Algebraic Geometry code and that the two constructions have similar asymptotic performances.
We also show that some known results on subfield subcodes of Algebraic Geometry codes can be proved nicely by using properties of the Cartier operator and that some known bounds on the dimension of subfield subcodes of Algebraic Geometry codes can be improved thanks to Cartier codes and the Cartier operator.
- [1]
D. J. Bernstein, T. Lange, and C. Peters.
Wild McEliece.
Cryptology ePrint Archive, Report 2010/410, 2010.
http://eprint.iacr.org/. - [2] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, https://doi.org/10.1006/jsco.1996.0125
- [3] Pierre Cartier, Une nouvelle opération sur les formes différentielles, C. R. Acad. Sci. Paris 244 (1957), 426–428 (French). MR 84497
- [4] Pierre Cartier, Questions de rationalité des diviseurs en géométrie algébrique, Bull. Soc. Math. France 86 (1958), 177–251 (French). MR 106223
- [5] V. D. Goppa, Codes on algebraic curves, Dokl. Akad. Nauk SSSR 259 (1981), no. 6, 1289–1290 (Russian). MR 628795
- [6] Tom Høholdt and Ruud Pellikaan, On the decoding of algebraic-geometric codes, IEEE Trans. Inform. Theory 41 (1995), no. 6, 1589–1614. Special issue on algebraic geometry codes. MR 1391018, https://doi.org/10.1109/18.476214
- [7] Yasutaka Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 721–724 (1982). MR 656048
- [8] G. L. Katsman and M. A. Tsfasman, A remark on algebraic geometric codes, Representation theory, group rings, and coding theory, Contemp. Math., vol. 93, Amer. Math. Soc., Providence, RI, 1989, pp. 197–199. MR 1003354, https://doi.org/10.1090/conm/093/1003354
- [9] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes. I, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. North-Holland Mathematical Library, Vol. 16. MR 0465509
- [10]
C. S. Seshadri.
L'opération de Cartier. Applications.
In Variétés de Picard, volume 4 of Séminaire Claude Chevalley. Secrétariat Mathématiques, Paris, 1958-1959. - [11] Alexei N. Skorobogatov, The parameters of subcodes of algebraic-geometric codes over prime subfields, Discrete Appl. Math. 33 (1991), no. 1-3, 205–214. Applied algebra, algebraic algorithms, and error-correcting codes (Toulouse, 1989). MR 1137746, https://doi.org/10.1016/0166-218X(91)90116-E
- [12] Henning Stichtenoth, On the dimension of subfield subcodes, IEEE Trans. Inform. Theory 36 (1990), no. 1, 90–93. MR 1043283, https://doi.org/10.1109/18.50376
- [13] Henning Stichtenoth, Algebraic function fields and codes, 2nd ed., Graduate Texts in Mathematics, vol. 254, Springer-Verlag, Berlin, 2009. MR 2464941
- [14] Yasuo Sugiyama, Masao Kasahara, Shigeichi Hirasawa, and Toshihiko Namekawa, Further results on Goppa codes and their applications to constructing efficient binary codes, IEEE Trans. Inform. Theory IT-22 (1976), no. 5, 518–526. MR 479662, https://doi.org/10.1109/tit.1976.1055610
- [15] Michael Tsfasman, Serge Vlăduţ, and Dmitry Nogin, Algebraic geometric codes: basic notions, Mathematical Surveys and Monographs, vol. 139, American Mathematical Society, Providence, RI, 2007. MR 2339649
- [16] M. A. Tsfasman, S. G. Vlăduţ, and Th. Zink, Modular curves, Shimura curves, and Goppa codes, better than Varshamov-Gilbert bound, Math. Nachr. 109 (1982), 21–28. MR 705893, https://doi.org/10.1002/mana.19821090103
- [17] Michael Wirtz, On the parameters of Goppa codes, IEEE Trans. Inform. Theory 34 (1988), no. 5, 1341–1343. Coding techniques and coding theory. MR 987679, https://doi.org/10.1109/18.21264
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11G20, 14G50, 94B27
Retrieve articles in all journals with MSC (2010): 11G20, 14G50, 94B27
Additional Information
Alain Couvreur
Affiliation:
INRIA Saclay Île-de-France – CNRS LIX, UMR 7161, École Polytechnique, 91128 Palaiseau Cedex, France
Email:
alain.couvreur@lix.polytechnique.fr
DOI:
https://doi.org/10.1090/S0002-9939-2014-12011-9
Keywords:
Algebraic Geometry codes,
differential forms,
Cartier operator,
subfield subcodes,
classical Goppa codes
Received by editor(s):
June 21, 2012
Received by editor(s) in revised form:
July 23, 2012
Published electronically:
March 14, 2014
Communicated by:
Matthew A. Papanikolas
Article copyright:
© Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.