Uniqueness of solutions to Schrödinger equations on 2-step nilpotent Lie groups
HTML articles powered by AMS MathViewer
- by Jean Ludwig and Detlef Müller
- Proc. Amer. Math. Soc. 142 (2014), 2101-2118
- DOI: https://doi.org/10.1090/S0002-9939-2014-12453-1
- Published electronically: March 13, 2014
- PDF | Request permission
Abstract:
Let $\mathfrak {g}=\mathfrak {g}_1\oplus \mathfrak {g}_2,[\mathfrak {g},\mathfrak {g}] =\mathfrak {g}_2,$ a nilpotent Lie algebra of step 2, $V_1,\cdots , V_m$ a basis of $\mathfrak {g}_1$ and $L=\sum _{j,k}^{m}a_{jk}V_j V_k$ a left-invariant differential operator on $G=\mathrm {exp} (\mathfrak {g})$, where $(a_{jk})_{jk}\in M_n(\mathbb {R})$ is symmetric. It is shown that if a solution $w(t,x)$ to the Schrödinger equation $\partial _t w(t,g)=i Lw(t,g),$ $g\in G, t\in \mathbb {R}, w(0,g)=f(g)$, satisfies a suitable Gaussian type estimate at time $t= 0$ and at some time $t=T\ne 0$, then $w=0$. The proof is based on Hardy’s uncertainty principle, on explicit computations within Howe’s oscillator semigroup and on methods developed by Fulvio Ricci and the second author. Our results extend work by Ben Saïd, Thangavelu and Dogga on the Schrödinger equation associated to the sub-Laplacian on Heisenberg type groups.References
- Aline Bonami, Bruno Demange, and Philippe Jaming, Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms, Rev. Mat. Iberoamericana 19 (2003), no. 1, 23–55. MR 1993414, DOI 10.4171/RMI/337
- Michael Cowling and John F. Price, Generalisations of Heisenberg’s inequality, Harmonic analysis (Cortona, 1982) Lecture Notes in Math., vol. 992, Springer, Berlin, 1983, pp. 443–449. MR 729369, DOI 10.1007/BFb0069174
- M. Cowling, L. Escauriaza, C. E. Kenig, G. Ponce, and L. Vega, The Hardy uncertainty principle revisited, Indiana Univ. Math. J. 59 (2010), no. 6, 2007–2025. MR 2919746, DOI 10.1512/iumj.2010.59.4395
- Luis Escauriaza, Carlos E. Kenig, Gustavo Ponce, and Luis Vega, The sharp Hardy uncertainty principle for Schrödinger evolutions, Duke Math. J. 155 (2010), no. 1, 163–187. MR 2730375, DOI 10.1215/00127094-2010-053
- L. Escauriaza, C. E. Kenig, G. Ponce, and L. Vega, Hardy’s uncertainty principle, convexity and Schrödinger evolutions, J. Eur. Math. Soc. (JEMS) 10 (2008), no. 4, 883–907. MR 2443923, DOI 10.4171/JEMS/134
- L. Escauriaza, C. E. Kenig, G. Ponce, and L. Vega, On uniqueness properties of solutions of Schrödinger equations, Comm. Partial Differential Equations 31 (2006), no. 10-12, 1811–1823. MR 2273975, DOI 10.1080/03605300500530446
- G. H. Hardy, A Theorem Concerning Fourier Transforms, J. London Math. Soc. 8 (1933), no. 3, 227–231. MR 1574130, DOI 10.1112/jlms/s1-8.3.227
- Roger Howe, The oscillator semigroup, The mathematical heritage of Hermann Weyl (Durham, NC, 1987) Proc. Sympos. Pure Math., vol. 48, Amer. Math. Soc., Providence, RI, 1988, pp. 61–132. MR 974332, DOI 10.1090/pspum/048/974332
- D. Müller and F. Ricci, Analysis of second order differential operators on Heisenberg groups. I, Invent. Math. 101 (1990), no. 3, 545–582. MR 1062795, DOI 10.1007/BF01231515
- Detlef Müller and Fulvio Ricci, Solvability for a class of doubly characteristic differential operators on $2$-step nilpotent groups, Ann. of Math. (2) 143 (1996), no. 1, 1–49. MR 1370756, DOI 10.2307/2118651
- Detlef Müller and Fulvio Ricci, Solvability for a class of non-homogeneous differential operators on two-step nilpotent groups, Math. Ann. 304 (1996), no. 3, 517–547. MR 1375623, DOI 10.1007/BF01446304
- Detlef Müller and Fulvio Ricci, Solvability of second-order left-invariant differential operators on the Heisenberg group satisfying a cone condition, J. Anal. Math. 89 (2003), 169–197. MR 1981917, DOI 10.1007/BF02893080
- Detlef Müller, Local solvability of linear differential operators with double characteristics. II. Sufficient conditions for left-invariant differential operators of order two on the Heisenberg group, J. Reine Angew. Math. 607 (2007), 1–46. MR 2338119, DOI 10.1515/CRELLE.2007.044
- Salem Ben Saïd, Sundaram Thangavelu, and Venku Naidu Dogga, Uniqueness of solutions to Schrödinger equations on $H$-type groups, J. Aust. Math. Soc. 95 (2013), no. 3, 297–314. MR 3164504, DOI 10.1017/S1446788713000311
- N. Th. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and geometry on groups, Cambridge Tracts in Mathematics, vol. 100, Cambridge University Press, Cambridge, 1992. MR 1218884
Bibliographic Information
- Jean Ludwig
- Affiliation: Laboratoire de Mathématiques et Applications de Metz UMR 7122, Université de Lorraine, île du Saulcy, 57045 Metz Cedex 01, France
- Email: jean.ludwig@univ-lorraine.fr
- Detlef Müller
- Affiliation: Mathematisches Seminar, C.A.-Universität Kiel, Ludewig-Meyn-Str. 4, D-24098 Kiel, Germany
- Email: mueller@math.uni-kiel.de
- Received by editor(s): July 19, 2012
- Published electronically: March 13, 2014
- Additional Notes: The second author was supported by a one-month research invitation from the University Paul Verlaine-Metz in 2010-2011
- Communicated by: Alexander Iosevich
- © Copyright 2014 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 142 (2014), 2101-2118
- MSC (2010): Primary 43A80, 22E30, 22E25, 35B05
- DOI: https://doi.org/10.1090/S0002-9939-2014-12453-1
- MathSciNet review: 3182028