BURGHELEA-HALLER ANALYTIC TORSION
OF \mathbb{Z}_2-GRADED ELLIPTIC COMPLEXES

GUANGXIANG SU

(Communicated by Varghese Mathai)

Abstract. In this paper, we extend the analytic torsion of \mathbb{Z}_2-graded elliptic complexes introduced by Mathai and Wu to the complex-valued case in the line of Burghelea and Haller. We also study properties of this generalized analytic torsion.

1. Introduction

Let E be a unitary flat vector bundle on a closed Riemannian manifold M. In [26], Ray and Singer defined an analytic torsion associated to (M,E) and proved that it does not depend on the Riemannian metric on M. Moreover, they conjectured that this analytic torsion coincides with the classical Reidemeister torsion defined using a triangulation on M (cf. [16]). This conjecture was later proved in the celebrated papers of Cheeger [10] and M"uller [18]. M"uller generalized this result in [19] to the case when E is a unimodular flat vector bundle on M. In [1], inspired by the considerations of Quillen [24], Bismut and Zhang reformulated the above Cheeger-M"uller theorem as an equality between the Reidemeister and Ray-Singer metrics defined on the determinant of cohomology, and proved an extension of it to the case of a general flat vector bundle over M. The method used in [1] is different from those of Cheeger and M"uller in that it makes use of a deformation by Morse functions introduced by Witten [28] on the de Rham complex.

In [21,22], Mathai and Wu generalized the classical Ray-Singer analytic torsion [26] to the twisted de Rham complex with an odd degree closed differential form H. Recently, Huang [14,15] generalized the refined analytic torsion [24] and the Cappell-Miller holomorphic and analytic torsion [9] to the twisted de Rham complex. In [27], Su generalized the Burghelea-Haller analytic torsion [5,7] to the twisted case. On the other hand, Mathai and Wu [23] defined and studied analytic torsion of \mathbb{Z}_2-graded elliptic complexes which applies to a myriad of new examples, including flat superconnection complexes, twisted analytic and twisted holomorphic torsions. So it is natural to ask whether the analytic torsion of a \mathbb{Z}_2-graded elliptic complex can be extended to the complex-valued case. In this paper, we will do this in the line of Burghelea and Haller.
The rest of this paper is organized as follows. In Section 2, we recall the definition of the \(\mathbb{Z}_2 \)-graded elliptic complex from [23] and define the Burghelea-Haller analytic torsion of this complex under the assumption that there exists a \(\mathbb{Z}_2 \)-graded non-degenerate symmetric bilinear form. In Section 3, we study the dependence of the analytic torsion defined in Section 2 on the metric and the symmetric bilinear form. In Section 4, we define the relative torsion similar to that in [23] and study the dependence of it on the metric and the symmetric bilinear form. In Section 5, we discuss the case of flat superconnections.

2. \(\mathbb{Z}_2 \)-graded elliptic complex and the construction of the torsion

Let \(X \) be a smooth closed manifold of dimension \(n \) and \(E = E^0 \oplus E^1 \) be a \(\mathbb{Z}_2 \)-graded complex vector bundle over \(X \). (We use \(k \) to denote the integer \(k \) modulo 2.) Suppose \(D : \Gamma(X, E) \to \Gamma(X, E) \) is an elliptic differential operator which is odd with respect to the grading in \(E \) and satisfies \(D^2 = 0 \). Then \(D \) is of the form

\[
D = \begin{pmatrix} 0 & D_1 \\ D_0 & 0 \end{pmatrix}
\]

on \(\Gamma(X, E) = \Gamma(X, E^0) \oplus \Gamma(X, E^1) \), where \(D_0 : \Gamma(X, E^0) \to \Gamma(X, E^1) \) and \(D_1 : \Gamma(X, E^1) \to \Gamma(X, E^0) \) are differential operators such that \(D_1D_0 = 0 \) and \(D_0D_1 = 0 \). Furthermore,

\[
\cdots \xrightarrow{D_1} \Gamma(X, E^0) \xrightarrow{D_0} \Gamma(X, E^1) \xrightarrow{D_1} \Gamma(X, E^0) \xrightarrow{D_0} \cdots
\]

is a \(\mathbb{Z}_2 \)-graded elliptic complex, which we denote by \((E, D)\) for short. Its cohomology groups are

\[
H^0(X, E, D) = \ker D_0 / \text{im} D_1, \quad H^1(X, E, D) = \ker D_1 / \text{im} D_0.
\]

And they are finite dimensional.

We choose a Riemannian metric \(g \) on \(X \) and suppose there exists a \(\mathbb{Z}_2 \)-graded non-degenerate symmetric bilinear form on \(E \) that is of type

\[
b = \begin{pmatrix} b_0 \\ b_1 \end{pmatrix}
\]

on \(E = E^0 \oplus E^1 \). Then there is a non-degenerate symmetric bilinear form on \(\Gamma(X, E) \) which we still denote by \(b \). Let \(D^\# \) be the adjoint operator of \(D \) with respect to \(b \). And define the Laplacian

\[
L_b = D^\# D + DD^\#
\]

on \(\Gamma(X, E) = \Gamma(X, E^0) \oplus \Gamma(X, E^1) \) which is, in graded components, \(L_b = \begin{pmatrix} L_{b,0} & L_{b,1} \\ L_{b,0} & L_{b,1} \end{pmatrix} \), where

\[
L_{b,0} = D_0^\# D_0 + D_1 D_1^\#, \quad L_{b,1} = D_1^\# D_1 + D_0 D_0^#.
\]

They are elliptic operators with positive-definite self-adjoint leading symbols. Suppose the order of \(L_b \) (or that of \(L_{b,0} \) and \(L_{b,1} \)) is \(d > 1 \). Let

\[
K_b(t, x, y) = \begin{pmatrix} K_{b,0}(t, x, y) \\ K_{b,1}(t, x, y) \end{pmatrix},
\]
where \(t > 0, x, y \in X \), be the kernel of \(e^{-t L_b} = \left(e^{-t L_{b,0}}, e^{-t L_{b,1}} \right) \). By [11] Lemma 1.8.2], when restricted to the diagonal, the heat kernel has the asymptotic expansion

\[
K_b(t, x, x) \sim \sum_{l=0}^{\infty} t^{\frac{2l-n}{2}} a_{b,l}(x),
\]

where \(a_{b,l}(x) = \left(a_{b,l,0}(x), a_{b,l,1}(x) \right) \) can be computed locally as a combinatorial expression in the jets of the symbols.

Let \(\lambda \) be a generalized eigenvalue of \(L_b \) and \(\Gamma(X, \mathcal{E})_{(\lambda)} \) be the generalized eigenspace corresponding to \(\lambda \). Then by ellipticity, \(\Gamma(X, \mathcal{E})_{(\lambda)} \) is of finite dimension. If \(\lambda, \mu \) are both generalized eigenvalues of \(L_b \) and \(\lambda \neq \mu \), we see that \(\Gamma(X, \mathcal{E})_{(\lambda)} \) and \(\Gamma(X, \mathcal{E})_{(\mu)} \) are \(b \)-orthogonal.

For any \(0 \leq a < +\infty \), set

\[
\Gamma(X, \mathcal{E})_{[0,a]} = \bigoplus_{0 \leq \lambda \leq a} \Gamma(X, \mathcal{E})_{(\lambda)}.
\]

Then \(\Gamma(X, \mathcal{E})_{[0,a]} \) is of finite dimension and one gets a non-degenerate symmetric bilinear form \(b_{[0,a]} \) on it. For the \(\mathbb{Z}_2 \)-graded finite dimensional complex

\[
\cdots \xrightarrow{D_1} \Gamma(X, \mathcal{E}^0)_{[0,a]} \xrightarrow{D_0} \Gamma(X, \mathcal{E})_{[0,a]} \xrightarrow{D_1} \Gamma(X, \mathcal{E}^0)_{[0,a]} \xrightarrow{D_0} \cdots,
\]

by the canonical isomorphism

\[
\det H^\bullet(\Gamma(X, \mathcal{E})_{[0,a]}, D) \cong \det(\Gamma(X, \mathcal{E})_{[0,a]}, D),
\]

one gets a non-degenerate symmetric bilinear form \(b_{\det H^\bullet(\Gamma(X, \mathcal{E})_{[0,a]}, D)} \) on the line \(\det H^\bullet(\Gamma(X, \mathcal{E})_{[0,a]}, D) \).

Let \(\Gamma(X, \mathcal{E})_{(a, +\infty)} \) be the \(b \)-orthogonal of \(\Gamma(X, \mathcal{E})_{[0,a]} \). Consider the partial Laplacian

\[
D^\# D = \begin{pmatrix} D_0^\# D_0 & D_1^\# D_1 \\ D_0 D_0^\# & D_1 D_1^\# \end{pmatrix}.
\]

Since \(D_k D_k^\# \) and \(L_{b,k} \) are equal and invertible on \(\text{im} D_k \cap \Gamma(X, \mathcal{E}^{k+1})_{(a, +\infty)} \), \(k = 0, 1 \), we see that

\[
P_k := D_k^\# \left(D_k D_k^\# \right)^{-1} D_k = D_k^\# (L_{b,k})^{-1} D_k
\]

is a pseudodifferential operator of order 0 and satisfies

\[
P_k^2 = P_k.
\]

By definition we have

\[
\zeta \left(s, D_k^\# D_k \mid \text{im} D_k^\# \cap \Gamma(X, \mathcal{E}^k)_{(a, +\infty)} \right) = \text{Tr} \left(L_{b,k}^{-s} P_k \mid \Gamma(X, \mathcal{E}^k)_{(a, +\infty)} \right) \]

\[
= \text{Tr} \left(P_k L_{b,k}^{-s} \mid \Gamma(X, \mathcal{E}^k)_{(a, +\infty)} \right).
\]

Then \(\zeta \left(s, D_k^\# D_k \mid \text{im} D_k^\# \cap \Gamma(X, \mathcal{E}^k)_{(a, +\infty)} \right) \) has a meromorphic extension to the whole complex plane and, by [20], Section 7, it is regular at 0. Then by [13], we have the following result which is an analogue of [20], Proposition 2.1].
Proposition 2.1. For \(k = 0, 1\), \(\zeta \left(s, D_k^* D_k \right|_{\text{im} D_k^* \cap \Gamma(X, \mathcal{E}_k)_{(a, +\infty)}} \) is holomorphic in the half plane for \(\text{Re}(s) > n/d\) and extends meromorphically to \(\mathbb{C}\) with possible poles at \(\{\frac{n-l}{d}, l = 0, 1, 2, \ldots\}\) only, and it is holomorphic at \(s = 0\).

By Proposition 2.1, one can define the determinant
\[
\det \left(D_k^* D_k \right|_{\Gamma(X, \mathcal{E}_k)_{(a, +\infty)}} \right) := \exp \left(-\zeta' \left(0, D_k^* D_k \right|_{\text{im} D_k^* \cap \Gamma(X, \mathcal{E}_k)_{(a, +\infty)}} \right) \right), \quad k = 0, 1.
\]

Then by the same proof as in [27, Proposition 3.2], one easily gets the following proposition.

Proposition 2.2. The symmetric bilinear form on \(\det \mathcal{H}^*(X, \mathcal{E}, D)\) via the isomorphism \(\det \mathcal{H}^*(\Gamma(X, \mathcal{E})_{[0, a]}, D) \cong \det \mathcal{H}^*(X, \mathcal{E}, D)\) defined by
\[
b_{\det \mathcal{H}^*}(\Gamma(X, \mathcal{E})_{[0, a]}, D)
\]
(2.3)
\[
\cdot \det' \left(D_0^* D_0 \right|_{\Gamma(X, \mathcal{E}_0)_{(a, +\infty)}} \right)^{-1} \cdot \det' \left(D_1^* D_1 \right|_{\Gamma(X, \mathcal{E}_1)_{(a, +\infty)}} \right)
\]
is independent of the choice of \(a \geq 0\).

Proof. Let \(0 \leq a < c < +\infty\). We have
\[
(\Gamma(X, \mathcal{E})_{[0, c]}, D) = (\Gamma(X, \mathcal{E})_{[0, a]}, D) \bigoplus (\Gamma(X, \mathcal{E})_{(a, c]}, D)
\]
and
\[
(\Gamma(X, \mathcal{E})_{(a, +\infty)}, D) = (\Gamma(X, \mathcal{E})_{(a, c]}, D) \bigoplus (\Gamma(X, \mathcal{E})_{(c, +\infty)}, D).
\]

By definition of determinant, we get
\[
\det' \left(D_k^* D_k \right|_{\Gamma(X, \mathcal{E}_k)_{(a, +\infty)}} \right)
\]
(2.5)
\[
= \det' \left(D_k^* D_k \right|_{\Gamma(X, \mathcal{E}_k)_{(a, c)}} \right) \cdot \det' \left(D_k^* D_k \right|_{\Gamma(X, \mathcal{E}_k)_{(c, +\infty)}} \right).
\]

Applying [27, Proposition 2.1] to (2.3), we get
\[
b_{\det \mathcal{H}^*}(\Gamma(X, \mathcal{E})_{[0, c]}, D)
\]
(2.6)
\[
= b_{\det \mathcal{H}^*}(\Gamma(X, \mathcal{E})_{[0, a]}, D) \cdot \det' \left(D_0^* D_0 \right|_{\Gamma(X, \mathcal{E}_0)_{(a, c)}} \right)^{-1} \cdot \det' \left(D_1^* D_1 \right|_{\Gamma(X, \mathcal{E}_1)_{(a, c)}} \right).
\]

Then we get the proposition. \(\square\)

Definition 2.3. The symmetric bilinear form defined by (2.3) is called the Ray-Singer symmetric bilinear torsion of the \(\mathbb{Z}_2\)-graded elliptic complex \((\mathcal{E}, D)\) and is denoted by \(b_{\det \mathcal{H}^*}(X, \mathcal{E}, D)\).

3. Variation of the torsion with respect to the metric and symmetric bilinear form

Suppose the pair \((g_u, b_u)\) is deformed smoothly along a one-parameter family with parameter \(u \in \mathbb{R}\). Let \(Q\) be the spectral projection onto \(\Gamma(X, \mathcal{E})_{[0, a]}\) and \(\Pi = 1 - Q\) be the spectral projection onto \(\Gamma(X, \mathcal{E})_{(a, +\infty)}\). Let
\[
\alpha = \alpha_0^{-1} \frac{\partial s_u}{\partial u} + b_u^{-1} \frac{\partial b_u}{\partial u}.
\]
Then we have the \(\alpha = \binom{\alpha_0}{\alpha_1}\).
Theorem 3.1. Under the above deformation of \(g\) and \(b\), we have
\[
\frac{\partial}{\partial u} \log b_{\det H^*(X,\mathcal{E},D)} = \text{Str}(\alpha a_{b,\frac{n}{2}}).
\]

Proof. The proof is similar to that in [23, Theorem 4.1]. First we have
\[
\frac{\partial}{\partial u} D_u^\# = -[\alpha, D_u^\#].
\]
In graded components, that is
\[
\frac{\partial D_0^\#}{\partial u} = -\alpha_1 D_0^\# + D_0^\# \alpha_0, \quad \frac{\partial D_1^\#}{\partial u} = -\alpha_0 D_1^\# + D_1^\# \alpha_1.
\]
Following [23], we set
\[
P = D^\# (DD^\#)^{-1} D = D^\# L_0^{-1} D
\]
and
\[
f(s, u) = \int_0^{+\infty} t^{s-1} \text{Str} \left(e^{-tD^\# D} P|_{\Gamma(X,\mathcal{E}) (a, +\infty)} \right) dt
\]
(3.1)
\[
\Gamma(s) \left(\zeta(s, D_0^\# D_0|_{\Gamma(X,\mathcal{E}) (a, +\infty)}) - \zeta(s, D_1^\# D_1|_{\Gamma(X,\mathcal{E}) (a, +\infty)}) \right).
\]
Using \(PD^\# = D^\#\), \(DP = P\) and \(P^2 = P\), we get
\[
\frac{P \partial P}{\partial u} P = 0.
\]
Then
\[
\frac{\partial f}{\partial u} = \int_0^{+\infty} t^{s-1} \text{Str} \left(t\alpha, D^\# \right) D e^{-tD^\# D} \Pi + e^{-tD^\# D} \frac{\partial P}{\partial u} \Pi) dt
\]
(3.2)
\[
= \int_0^{+\infty} t^{s-1} \text{Str} \left(t\alpha, e^{-tD^\# D} D^\# D - e^{-tDD^\#} D^\# \right) \Pi + e^{-tD^\# D} \frac{\partial P}{\partial u} \Pi) dt
\]
\[
= \int_0^{+\infty} t^s \text{Str} (\alpha e^{-tL_b} L_b \Pi) dt
\]
\[
= -\int_0^{+\infty} t^s \frac{\partial}{\partial t} \text{Str} (\alpha e^{-tL_b} \Pi) dt
\]
\[
= s \left(\int_1^1 + \int_1^{+\infty} \right) t^{s-1} \text{Str} (\alpha e^{-tL_b} (1 - Q)) dt.
\]
By the asymptotic expansion of \(\text{Str}(\alpha e^{-tL_b})\) as \(t \downarrow 0\),
\[
\int_0^{1} t^{s-1} \text{Str} (\alpha e^{-tL_b}) dt
\]
has a possible first order pole at \(s = 0\) with residue \(\text{Str}(\alpha a_{b,\frac{n}{2}})\). On the other hand, because of the exponential decay of \(\text{Str}(\alpha e^{-tL_b} \Pi)\) for large \(t\),
\[
\int_1^{+\infty} t^{s-1} \text{Str} (\alpha e^{-tL_b} \Pi) dt
\]
is an entire function in \(s\). So
\[
\frac{\partial f}{\partial u} \bigg|_{s=0} = -\text{Str}(\alpha (Q - a_{b,\frac{n}{2}}))
\]
(3.3)
and hence
\[
\frac{\partial}{\partial u} \left(\zeta \left(0, D_0^\# D_0|_{\Gamma(X,\mathcal{E}) (a, +\infty)} \right) - \zeta \left(0, D_1^\# D_1|_{\Gamma(X,\mathcal{E}) (a, +\infty)} \right) \right) = 0.
\]
(3.4)
Then from (3.3), (3.4) and
(3.5)
\[
\frac{\det'(D^\#_1 D_1|_{\Gamma(X,E^\dagger)(a,+\infty)})}{\det'(D^\#_0 D_0|_{\Gamma(X,E^0)(a,+\infty)})}
= \exp(\lim_{s \to 0} (f(s,u) - \frac{1}{s}(\zeta(0,D^\#_0 D_0|_{\Gamma(X,E^0)(a,+\infty)}) - \zeta(0,D^\#_1 D_1|_{\Gamma(X,E^\dagger)(a,+\infty)}))))
\]
we get
(3.6) \[\frac{\partial}{\partial u} \log \left(\frac{\det'(D^\#_1 D_1|_{\Gamma(X,E^\dagger)(a,+\infty)})}{\det'(D^\#_0 D_0|_{\Gamma(X,E^0)(a,+\infty)})} \right) = -\text{Str}(\alpha(Q - a b, u)). \]
By [27, Lemma 4.2], one easily gets
(3.7) \[\frac{\partial}{\partial w} \left| \begin{array}{c} b_{w,\text{det}H^*_{\Gamma(X,E)([0,a],D)}} \\ b_{u,\text{det}H^*_{\Gamma(X,E)([0,a],D)}} \end{array} \right| = \text{Str}(\alpha Q). \]
Then by (3.6) and (3.7), we get the theorem. \[
\square
\]
4. INVARIANCE OF RELATIVE TORSION UNDER DEFORMATION OF METRICS:
THE EVEN-DIMENSIONAL CASE

When \(n = \dim X \) is even, the torsion does depend on the metric \(g \) on \(X \) and the non-degenerate symmetric bilinear form \(b \) on \(\mathcal{E} \). However, we will prove that the relative analytic torsion defined similarly as in [23] is independent of the choice of \(g \) and \(b \).

Let \(\Pi = \pi_1(X) \) be the fundamental group of \(X \) and let \(\rho : \Pi \to GL(m, \mathbb{C}) \) be a representation of \(\Pi \). Then \(\rho \) determines a flat bundle \(\mathcal{F}_\rho \) over \(X \) given by
\[\mathcal{F}_\rho = \left(\tilde{X} \times \mathbb{C}^m \right) / \sim, \ (x\gamma,v) \sim (x,\rho(\gamma)v), \]
where \(\tilde{X} \) is the universal cover of \(X \). Smooth sections of \(\mathcal{F}_\rho \) are smooth maps \(s : \tilde{X} \to \mathbb{C}^m \) that are \(\Pi \)-equivariant, i.e., \(s \circ \gamma = \rho(\gamma)s \) for all \(\gamma \in \Pi \). We want to extend \(D \) to an action on the sections of \(\mathcal{E}_\rho = \mathcal{E} \otimes \mathcal{F}_\rho \). Since \(D \) is a differential operator, it lifts to the universal cover \(\tilde{X} \) as a \(\Pi \)-periodic operator \(\tilde{D} : \Gamma(\tilde{X},\tilde{E}) \to \Gamma(\tilde{X},\tilde{E}) \), where \(\tilde{E} \) is the pull-back of \(\mathcal{E} \) to \(\tilde{X} \). By tensoring with the identity operator on \(\mathbb{C}^m \), we can extend it to \(\tilde{D} : \Gamma(\tilde{X},\tilde{E} \otimes \mathbb{C}^m) \to \Gamma(\tilde{X},\tilde{E} \otimes \mathbb{C}^m) \). Since for any \(\Pi \)-equivariant section \(s \in \Gamma(\tilde{X},\tilde{E} \otimes \mathbb{C}^m) \),
\[(\tilde{D}s) \circ \gamma = \tilde{D}(s \circ \gamma) = \tilde{D}(\rho(\gamma)s) = \rho(\gamma)(\tilde{D}s), \]
the operator \(\tilde{D} \) descends to a differential operator \(D_\rho : \Gamma(X,\mathcal{E}_\rho) \to \Gamma(X,\mathcal{E}_\rho) \). If \((\mathcal{E},D) \) is a \(\mathbb{Z}_2 \)-graded elliptic complex, then so is \((\mathcal{E}_\rho, D_\rho) \).

Now suppose \(X \) is a closed, compact, oriented Riemannian manifold and \(\mathcal{E} \) is a \(\mathbb{Z}_2 \)-graded Hermitian bundle. Let \(\rho_1, \rho_2 \) be unitary representations of \(\Pi \) of the same dimension \(m \). Then the flat bundles \(\mathcal{F}_{\rho_i} \) have induced non-degenerate symmetric bilinear forms from \(\mathbb{C}^m \), and so \(\mathcal{E}_{\rho_i} \) have non-degenerate symmetric bilinear forms. Furthermore, if \((\mathcal{E},D) \) is a \(\mathbb{Z}_2 \)-graded elliptic complex, then so are \((\mathcal{E}_{\rho_i}, D_{\rho_i}) \) for \(i = 1, 2 \).
Definition 4.1. The relative Burghelea-Haller analytic torsion is the non-degenerate symmetric bilinear form on \(\det H^\bullet(X, \mathcal{E}_{\rho_1}, D_{\rho_1}) \otimes \det H^\bullet(X, \mathcal{E}_{\rho_2}, D_{\rho_2})^{-1} \) defined by

\[
\tilde{b}_{\det H^\bullet(X, \mathcal{E}_{\rho_1}, D_{\rho_1}) \otimes \det H^\bullet(X, \mathcal{E}_{\rho_2}, D_{\rho_2})}.
\]

To show its dependence of the metric and the non-degenerate symmetric bilinear forms, let \(K_{\rho_i}(t, x, y) \) denote, for \(i = 1, 2 \), the heat kernel of the Laplacians \(L_{\rho_i} = D_{\rho_i}^\# D_{\rho_i} + D_{\rho_i} D_{\rho_i}^\# \). Then by the same proof as in [23 Proposition 5.2], we have

Proposition 4.2. In the notation above, there are positive constants \(C, C' \) such that as \(t \to 0 \), one has for all \(x \in X \),

\[
|K_{\rho_1}(t, x, x) - K_{\rho_2}(t, x, x)| \leq Ct^{-n/d} \exp\left[-C't^{-\frac{1}{d}} \right],
\]

where \(d \) is the order of the Laplacians.

Proof. Let \(\tilde{K}(t, x, y) \) denote the heat kernel of the Laplacian \(\tilde{L} = \tilde{D}^\# \tilde{D} + \tilde{D} \tilde{D}^\# \) on \(\tilde{X} \). Then, by the Selberg principle, one has for \(x, y \in \tilde{X} \),

\[
K_{\rho_j}(t, \bar{x}, \bar{y}) = \sum_{\gamma \in \Pi} \tilde{K}(t, x, y\gamma) \rho_j(\gamma),
\]

where \(\bar{x} \in X \) stands for the projection of \(x \in \tilde{X} \). It follows that

\[
K_{\rho_1}(t, \bar{x}, \bar{y}) - K_{\rho_2}(t, \bar{x}, \bar{y}) = \sum_{\gamma \in \Pi \setminus \{1\}} \tilde{K}(t, x, y\gamma) (\rho_1(\gamma) - \rho_2(\gamma)).
\]

Since \(\rho_i \) (\(i = 1, 2 \)) are unitary representations, one has

\[
|K_{\rho_1}(t, \bar{x}, \bar{y}) - K_{\rho_2}(t, \bar{x}, \bar{y})| \leq \sum_{\gamma \in \Pi \setminus \{1\}} 2 \left| \tilde{K}(t, x, y\gamma) \right|.
\]

Since the principal symbol of \(\tilde{L} \) is the same as the operator considered in [23 Proposition 5.2], then by [12] and the proof of [8 Proposition 1], one can get the following off-diagonal Gaussian estimate for the heat kernel on \(\tilde{X} \):

\[
\left| \tilde{K}(t, x, y) \right| \leq C_1 t^{-n/d} \exp\left[-C_2 t^{-\frac{1}{d}} d(x, y)^{\frac{d}{d-1}} \right],
\]

where \(d(x, y) \) is the Riemannian distance between \(x, y \in \tilde{X} \). Therefore

\[
|K_{\rho_i}(t, \bar{x}, \bar{x}) - K_{\rho_2}(t, \bar{x}, \bar{x})| \leq 2C_1 t^{-n/d} \sum_{\gamma \in \Pi \setminus \{1\}} \exp\left[-C_2 t^{-\frac{1}{d}} d(x, y)^{\frac{d}{d-1}} \right].
\]

By Milnor’s theorem [17], there is a positive constant \(C_3 \) such that \(d(x, x\gamma) \geq C_3 l(\gamma) \), where \(l \) denotes a word metric on \(\Pi \). Moreover, the number of elements in the sphere \(\tilde{S}_l \) of radius \(l \) in \(\Pi \) satisfies \(\# \tilde{S}_l \leq C_4 e^{C_5 l} \) for some positive constants \(C_4, C_5 \). Therefore

\[
\sum_{\gamma \in \Pi \setminus \{1\}} \exp\left[-C_2 t^{-\frac{1}{d}} d(x, x\gamma)^{\frac{d}{d-1}} \right]
\]

(4.1)

\[
\leq \sum_{\gamma \in \Pi \setminus \{1\}} \exp\left[-C' t^{-\frac{1}{d}} l(\gamma)^{\frac{d}{d-1}} \right] = \sum_{l=1}^{\infty} \left[-C' t^{-\frac{1}{d}} l^{\frac{d}{d-1}} \right] C_4 e^{C_5 l}
\]

\[
\leq C_4 \exp\left[-C' t^{-\frac{1}{d}} \right] \sum_{l=1}^{\infty} \exp\left[-C' \left(l^{\frac{d}{d-1}} - 1 \right) + C_5 l \right].
\]
Theorem 4.3. Let X be a closed oriented manifold of even dimension. Let ρ_1, ρ_2 be unitary representations of $\pi_1(X)$ of the same dimension. Then the relative analytic torsion $b_{\det H^\bullet(X,\varepsilon_{\rho_1},D_{\rho_1})}^{-1} \otimes b_{\det H^\bullet(X,\varepsilon_{\rho_2},D_{\rho_2})}^{-1}$ is independent of the choice of the metric on X and the non-degenerate symmetric bilinear form on ε.

Proof. By Theorem 3.1 under a one-parameter deformation of the metric and the non-degenerate symmetric bilinear form,

$$\frac{\partial}{\partial v} \log b_{\det H^\bullet(X,\varepsilon_{\rho_1},D_{\rho_1})} = \text{Str}(\alpha a^0_{\frac{\alpha}{2}})$$

for $i = 1, 2$. By Proposition 4.2 we have $a^0_{\frac{\alpha}{2}} = a^0_{\frac{\beta}{2}}$. Then we get the theorem. \qed

5. The case of flat superconnections

Let X be a smooth manifold and $\mathcal{F} = \mathcal{F}^0 \oplus \mathcal{F}^1$, a \mathbb{Z}_2-graded complex vector bundle over X. Then the space $\Omega(X, \mathcal{F})$ of \mathcal{F}-valued differential forms has a \mathbb{Z}_2-grading with

$$\Omega(X, \mathcal{F})^0 = \Omega^0(X, \mathcal{F}^0) \oplus \Omega^1(X, \mathcal{F}^1), \quad \Omega(X, \mathcal{F})^1 = \Omega^0(X, \mathcal{F}^1) \oplus \Omega^1(X, \mathcal{F}^0).$$

A superconnection (cf. [20,25]) is a first-order differential operator A on $\Omega(X, \mathcal{F})$ that is odd with respect to the \mathbb{Z}_2-grading and satisfies

$$A(\alpha \wedge s) = (A\alpha) \wedge s + (-1)^{\vert\alpha\vert} \alpha \wedge s$$

for any $\alpha \in \Omega(X)$ and $s \in \Omega(X, \mathcal{F})$. The bundle $\text{End}(\mathcal{F})$ is also \mathbb{Z}_2-graded and A extends to $\Omega(X, \text{End}(\mathcal{F}))$. If X is closed, compact, oriented Riemannian manifold, A is a flat superconnection and there exists a \mathbb{Z}_2-graded non-degenerated symmetric bilinear form on \mathcal{F}, then we can define a symmetric bilinear form $b_{\det H^\bullet(X,\mathcal{F},A)}$ as in Section 2 and Theorem 3.1 also holds for $b_{\det H^\bullet(X,\mathcal{F},A)}$.

Suppose $G \in \Omega(X, \text{End}(\mathcal{F}))^0$ is point-wise invertible. Then $A' = G^{-1} A G$ is another flat superconnection on \mathcal{F}; we say that A' is gauge equivalent to A. There is an isomorphism of cohomology groups $H^\bullet(X, \mathcal{F}, A) \cong H^\bullet(X, \mathcal{F}, A')$, and hence of the corresponding determinant lines, induced by G. Now suppose A is deformed to A_v along a path parameterized by v so that each A_v is gauge equivalent to A via G_v. Let $\phi_v : H^\bullet(X, \mathcal{F}, A) \to H^\bullet(X, \mathcal{F}, A_v)$ and $\phi_v : \det H^\bullet(X, \mathcal{F}, A) \to \det H^\bullet(X, \mathcal{F}, A_v)$ be the induced isomorphisms. Then we can compare the symmetric bilinear forms $\phi_v^* b_{\det H^\bullet(X,\mathcal{F},A_v)}$ and $b_{\det H^\bullet(X,\mathcal{F},A_v)}$.

Let

$$\beta_v = G_v^{-1} \frac{\partial G_v}{\partial v} \in \Omega(X, \text{End}(\mathcal{F}))^0.$$

Since $A_v = G_v^{-1} A G_v$, then we get

$$\frac{\partial A_v}{\partial v} = \frac{\partial G_v^{-1}}{\partial v} A G_v + G_v^{-1} A \frac{\partial G_v}{\partial v}$$

(5.1)

and

$$\frac{\partial A_v^\#}{\partial v} = [\beta_v^\#, A_v^\#].$$
Theorem 5.1. Under deformation of \mathcal{A} by gauge equivalence and the natural identification of determinant lines, we have
\[
\frac{\partial}{\partial v} \log \left(\phi^*_v b_{\det H^\bullet(X,F,\mathcal{A})} \right) = -2 \text{Str}(\beta_v a_b, \frac{d}{2}).
\]

If $\dim X = n$ is odd, then the above is zero. In this case, the analytic torsion $b_{\det H^\bullet(X,F,\mathcal{A})}$ is invariant under gauge equivalence.

Proof. Set $P_v = \mathcal{A}_v^\# (\mathcal{A}_v \mathcal{A}_v^\#)^{-1} \mathcal{A}_v$ and
\[
f(s, v) = \int_0^{+\infty} t^{s-1} \text{Str} \left(e^{-\lambda^\#_{\mathcal{A}_v}} P_v |_{\Omega(X,F)_{(a,+,\infty)}} \right) dt.
\]
Then as in the proof of Theorem 3.1, using the fact that $\text{Tr}(A) = \text{Tr}(A^\#)$ for the trace class operator A, we get
\[
\frac{\partial f}{\partial v} |_{s=0} = 2 \text{Str}(\beta_v (Q - a_b, \frac{d}{2})).
\]

Then one gets
\[
\frac{\partial}{\partial v} \log \left(\frac{\det'(\mathcal{A}_v, 1 |_{\Omega(X,F)_1^{(a,+,\infty)}})}{\det'(\mathcal{A}_v, 0 |_{\Omega(X,F)_0^{(a,+,\infty)}})} \right) = 2 \text{Str}(\beta_v (Q - a_b, \frac{d}{2})).
\]

On the other hand, for small v, we have $\phi_v : \Omega(X,F,\mathcal{A})_{[0,a]} \to \Omega(X,F,\mathcal{A})_{[0,a]}$ is an isomorphism of complexes, and the induced symmetric bilinear form on the $\det H^\bullet(\Omega(X,F,\mathcal{A})_{[0,a]})$ is
\[
(\phi^*_v b_{\det H^\bullet(X,F,\mathcal{A})_{[0,a]}}, \phi^*_v b_{\det H^\bullet(X,F,\mathcal{A})_{[0,a]}}) = b_{\det H^\bullet(X,F,\mathcal{A})_{[0,a]}}(\phi^*_v, \phi^*_v).
\]
Since $G^{-1}_v \mathcal{A} = \mathcal{A}_v G^{-1}_v$, one easily gets
\[
\frac{\partial}{\partial v} \log \left(\frac{\phi^*_v b_{\det H^\bullet(X,F,\mathcal{A})_{[0,a]}}}{b_{\det H^\bullet(X,F,\mathcal{A})_{[0,a]}}} \right) = -2 \text{Str}(\beta_v Q).
\]

Then from (5.2) and (5.3) we get the theorem. \qed

If $\dim X$ is even, a relative version of $b_{\det H^\bullet(X,F,\mathcal{A})}$ is invariant under gauge equivalence.

References

J. Milnor, A note on curvature and fundamental group, J. Differential Geometry 2 (1968), 1–7. MR0232311 (38 #636)

