Central units of integral group rings
HTML articles powered by AMS MathViewer
- by Eric Jespers, Gabriela Olteanu, Ángel del Río and Inneke Van Gelder
- Proc. Amer. Math. Soc. 142 (2014), 2193-2209
- DOI: https://doi.org/10.1090/S0002-9939-2014-11958-7
- Published electronically: March 27, 2014
- PDF | Request permission
Abstract:
We give an explicit description for a basis of a subgroup of finite index in the group of central units of the integral group ring $\mathbb {Z} G$ of a finite abelian-by-supersolvable group such that every cyclic subgroup of order not a divisor of 4 or 6 is subnormal in $G$. The basis elements turn out to be a natural product of conjugates of Bass units. This extends and generalizes a result of Jespers, Parmenter and Sehgal showing that the Bass units generate a subgroup of finite index in the center $\mathcal {Z} (\mathcal {U} (\mathbb {Z} G))$ of the unit group $\mathcal {U} (\mathbb {Z} G)$ in case $G$ is a finite nilpotent group. Next, we give a new construction of units that generate a subgroup of finite index in $\mathcal {Z}(\mathcal {U}(\mathbb {Z} G))$ for all finite strongly monomial groups $G$. We call these units generalized Bass units. Finally, we show that the commutator group $\mathcal {U}(\mathbb {Z} G)/\mathcal {U}(\mathbb {Z} G)’$ and $\mathcal {Z}(\mathcal {U}(\mathbb {Z} G))$ have the same rank if $G$ is a finite group such that $\mathbb {Q} G$ has no epimorphic image which is either a non-commutative division algebra other than a totally definite quaternion algebra or a two-by-two matrix algebra over a division algebra with center either the rationals or a quadratic imaginary extension of $\mathbb {Q}$. This allows us to prove that in this case the natural images of the Bass units of $\mathbb {Z} G$ generate a subgroup of finite index in $\mathcal {U}(\mathbb {Z} G)/\mathcal {U}(\mathbb {Z} G)’$.References
- H. Bass, $K$-theory and stable algebra, Inst. Hautes Études Sci. Publ. Math. 22 (1964), 5–60. MR 174604
- Hyman Bass, The Dirichlet unit theorem, induced characters, and Whitehead groups of finite groups, Topology 4 (1965), 391–410. MR 193120, DOI 10.1016/0040-9383(66)90036-X
- Armand Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962), 485–535. MR 147566, DOI 10.2307/1970210
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- Raul Antonio Ferraz, Simple components and central units in group algebras, J. Algebra 279 (2004), no. 1, 191–203. MR 2078394, DOI 10.1016/j.jalgebra.2004.05.005
- Raul Antonio Ferraz and Juan Jacobo Simón-Pınero, Central units in metacyclic integral group rings, Comm. Algebra 36 (2008), no. 10, 3708–3722. MR 2458401, DOI 10.1080/00927870802158028
- J. Z. Gonçalves and D. S. Passman, Linear groups and group rings, J. Algebra 295 (2006), no. 1, 94–118. MR 2188853, DOI 10.1016/j.jalgebra.2005.02.009
- Eric Jespers, Ángel del Río, and Inneke Van Gelder, Writing units of integral group rings of finite abelian groups as a product of Bass units, Math. Comp. 83 (2014), no. 285, 461–473. MR 3120600, DOI 10.1090/S0025-5718-2013-02718-4
- Eric Jespers and Guilherme Leal, Generators of large subgroups of the unit group of integral group rings, Manuscripta Math. 78 (1993), no. 3, 303–315. MR 1206159, DOI 10.1007/BF02599315
- Eric Jespers and M. M. Parmenter, Construction of central units in integral group rings of finite groups, Proc. Amer. Math. Soc. 140 (2012), no. 1, 99–107. MR 2833521, DOI 10.1090/S0002-9939-2011-10968-7
- E. Jespers, M. M. Parmenter, and S. K. Sehgal, Central units of integral group rings of nilpotent groups, Proc. Amer. Math. Soc. 124 (1996), no. 4, 1007–1012. MR 1328353, DOI 10.1090/S0002-9939-96-03398-9
- Bernhard Liehl, On the group $\textrm {SL}_{2}$ over orders of arithmetic type, J. Reine Angew. Math. 323 (1981), 153–171. MR 611449, DOI 10.1515/crll.1981.323.153
- Aurora Olivieri, Ángel del Río, and Juan Jacobo Simón, On monomial characters and central idempotents of rational group algebras, Comm. Algebra 32 (2004), no. 4, 1531–1550. MR 2100373, DOI 10.1081/AGB-120028797
- Aurora Olivieri, Á. del Río, and Juan Jacobo Simón, The group of automorphisms of the rational group algebra of a finite metacyclic group, Comm. Algebra 34 (2006), no. 10, 3543–3567. MR 2262368, DOI 10.1080/00927870600796136
- Donald S. Passman, Infinite crossed products, Pure and Applied Mathematics, vol. 135, Academic Press, Inc., Boston, MA, 1989. MR 979094
- César Polcino Milies and Sudarshan K. Sehgal, An introduction to group rings, Algebra and Applications, vol. 1, Kluwer Academic Publishers, Dordrecht, 2002. MR 1896125, DOI 10.1007/978-94-010-0405-3
- I. Reiner, Maximal orders, London Mathematical Society Monographs, No. 5, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1975. MR 0393100
- Jürgen Ritter and Sudarshan K. Sehgal, Generators of subgroups of $U(\mathbf Z G)$, Representation theory, group rings, and coding theory, Contemp. Math., vol. 93, Amer. Math. Soc., Providence, RI, 1989, pp. 331–347. MR 1003362, DOI 10.1090/conm/093/1003362
- Jürgen Ritter and Sudarshan K. Sehgal, Construction of units in group rings of monomial and symmetric groups, J. Algebra 142 (1991), no. 2, 511–526. MR 1127078, DOI 10.1016/0021-8693(91)90322-Y
- Jürgen Ritter and Sudarshan K. Sehgal, Trivial units in $RG$, Math. Proc. R. Ir. Acad. 105A (2005), no. 1, 25–39. MR 2138721, DOI 10.3318/PRIA.2005.105.1.25
- S. K. Sehgal, Units in integral group rings, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 69, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. With an appendix by Al Weiss. MR 1242557
- K. Shoda, Über die monomialen darstellungen einer endlichen gruppe, Proc. Phys.-math. Soc. Jap. 15 (1933), no. 3, 249–257.
- Carl Ludwig Siegel, Discontinuous groups, Ann. of Math. (2) 44 (1943), 674–689. MR 9959, DOI 10.2307/1969104
- L. N. Vaseršteĭn, The group $SL_{2}$ over Dedekind rings of arithmetic type, Mat. Sb. (N.S.) 89(131) (1972), 313–322, 351 (Russian). MR 0435293
- L. N. Vaseršteĭn, Structure of the classical arithmetic groups of rank greater than $1$, Mat. Sb. (N.S.) 91(133) (1973), 445–470, 472 (Russian). MR 0349864
- T. N. Venkataramana, On systems of generators of arithmetic subgroups of higher rank groups, Pacific J. Math. 166 (1994), no. 1, 193–212. MR 1306038
Bibliographic Information
- Eric Jespers
- Affiliation: Department of Mathematics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- MR Author ID: 94560
- Email: efjesper@vub.ac.be
- Gabriela Olteanu
- Affiliation: Department of Statistics-Forecasts-Mathematics, Babeş-Bolyai University, Strada T. Mihali 58-60, 400591 Cluj-Napoca, Romania
- Email: gabriela.olteanu@econ.ubbcluj.ro
- Ángel del Río
- Affiliation: Departamento de Matemáticas, Universidad de Murcia, 30100 Murcia, Spain
- MR Author ID: 288713
- Email: adelrio@um.es
- Inneke Van Gelder
- Affiliation: Department of Mathematics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Email: ivgelder@vub.ac.be
- Received by editor(s): March 1, 2012
- Received by editor(s) in revised form: July 6, 2012
- Published electronically: March 27, 2014
- Additional Notes: This research was partially supported by Ministerio de Ciencia y Tecnología of Spain and Fundación Séneca of Murcia, the Research Foundation Flanders (FWO - Vlaanderen), Onderzoeksraad Vrije Universiteit Brussel and by the grant PN-II-RU-TE-2009-1 project ID_303 financed by the Romanian Ministry of National Education, CNCS-VEFISCDI
- Communicated by: Pham Huu Tiep
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 142 (2014), 2193-2209
- MSC (2010): Primary 16S34, 16U60, 16U70
- DOI: https://doi.org/10.1090/S0002-9939-2014-11958-7
- MathSciNet review: 3195747