ASYMPTOTICS OF ORBITS OF A KOLMOGOROV TYPE
PLANAR VECTOR FIELD
WITH A FIXED NEWTON POLYGON

F. BEREZOVSKAYA

Dedicated to the memory of Professor A. M. Molchanov

Abstract. Using the Newton polygon technique we show that the orbits of a
Kolmogorov type planar vector field, consisting of a finite sum of power terms,
have power asymptotics while tending to the equilibria on the axes and on the
boundary of the Poincaré sphere.

1. Introduction

Let us consider a two-dimensional vector field Ω defined on the Poincaré sphere
with a Kolmogorov type system

\[
\Omega(V_1, V_2) \equiv \Omega(\nu) : \frac{d\nu_1}{dt} = V_1(\nu_1, \nu_2) \equiv \nu_1 P_1(\nu_1, \nu_2),
\]

\[
\frac{d\nu_2}{dt} = V_2(\nu_1, \nu_2) \equiv \nu_2 P_2(\nu_1, \nu_2).
\]

Here $(\nu_1, \nu_2) \equiv (x_1, x_2), V_1(\nu_1, \nu_2) \equiv X_1(x_1, x_2), V_2(\nu_1, \nu_2) \equiv X_2(x_1, x_2)$ for finite
x_1 and power functions

\[
P_1(x_1, x_2) = \sum_{\mu, \nu} p_{\mu \nu} x_1^\mu x_2^\nu, \quad P_2(x_1, x_2) = \sum_{\mu, \nu} q_{\mu \nu} x_1^\mu x_2^\nu, \quad \mu \geq 0, \nu \geq 0, p_{\mu \nu}, q_{\mu \nu} \in \mathbb{R},
\]

consist of a finite number of summands with distinct powers $(\mu, \nu) \in \mathbb{R}^2_+$:

\[
(\nu_1, \nu_2) \equiv (z_1 = 1/x_1, z_2 = x_2/x_1),
\]

\[
V_1(\nu_1, \nu_2) \equiv Z_1(z_1, z_2) = z_1 Q_1(z_1, z_2), \quad V_2(\nu_1, \nu_2) \equiv Z_2(z_1, z_2) = z_2 Q_2(z_1, z_2),
\]

\[
Q_1(z_1, z_2) = -P_1(1/z_1, z_2/z_1), \quad Q_2(z_1, z_2) = P_2(1/z_1, z_2/z_1) - P_1(1/z_1, z_2/z_1),
\]

\[
(\nu_1, \nu_2) \equiv (u_1 = x_1/x_2, u_2 = 1/x_2),
\]

\[
V_1(\nu_1, \nu_2) \equiv U_1(u_1, u_2) = u_1 R_1(u_1, u_2), \quad V_2(\nu_1, \nu_2) \equiv R_2(u_1, u_2) = u_2 R_2(u_1, u_2),
\]

\[
R_1(u_1, u_2) = P_1(u_1/u_2, 1/u_2) - P_2(u_1/u_2, 1/u_2), \quad R_2(u_1, u_2) = -P_2(u_1/u_2, 1/u_2),
\]

respectively, close to equators of the Poincaré sphere $z_1 u_2 = 0$.
The vector field $\Omega(x)$ has a singular point $(x_1 = 0, x_2 = 0)$. This point is isolated only if P_1, P_2 have no common factors x_1, x_2. In such a case $\Omega(x)$ has a singular point $(x_1 = 0, x_2 = a \neq 0)$ if $P_2(0, a) = 0$, and $(x_1 = a \neq 0, x_2 = 0)$ if $P_2(a, 0) = 0$. It is straightforward to verify that vector fields $\Omega(z)$ and $\Omega(u)$ have the singular points $(z_1 = 0, z_2 = 0)$ and $(u_1 = 0, u_2 = 0)$ respectively. Vector fields $\Omega(x), \Omega(z)$ are equivalent everywhere except $x_1z_1 = 0, \Omega(x), \Omega(u)$ are equivalent everywhere except $x_2u_2 = 0 (z_1 = 0, u_2 = 0)$ are the equators of the Poincaré sphere and $\Omega(z), \Omega(u)$ are equivalent everywhere except $z_1 = 1, u_2 = 0$; if $\Omega(z)$ has singular point $(z_1 = 0, z_2 = a \neq 0)$, then $\Omega(u)$ has singular point $(u_1 = 1/a \neq 0, u_2 = 0)$.

Without loss of generality we will suppose below that vector fields are \emph{continuously differentiable} (C^1) in both variables; we consider them to be defined in \mathbb{R}^2.

The objective of this work is to describe the asymptotic behavior of the orbits of the vector fields $\Omega(x), \Omega(z), \Omega(u)$ near the axes $x_1x_2 = 0$ and the equators of the Poincaré sphere $z_1u_2 = 0$.

To solve this problem we apply methods of the Newton diagram (polygon) (see \cite{2,7} and the references in \cite{2}). We use a modification of the method, which has been developed in \cite{8,9}, for an analysis of trajectories tending to a non-hyperbolic $O(x)$–$O(y)$ and the references in \cite{2}).

In this paper we generalize these results analyzing isolated singular points (isp) $A(a_1, a_2)$ of vector fields $\Omega(x), \Omega(z), \Omega(u)$, for which $a_1a_2 = 0$. Note that this kind of problem still finds new applications (see, for example, \cite{10,11}).

2. Newton Polygon. The main statement

2.1. Definitions. (See Figure 1.) (1) The set $M = \{(u, v), |p_{\mu\nu}| + |q_{\mu\nu}| \neq 0\}$ is called the \emph{support} of system (1.1) and of the vector field $\Omega(x)$, and $(p_{\mu\nu}, q_{\mu\nu})$ is called the \emph{vector coefficient} of the point $(\mu, \nu) \in M$.

(2) The Newton polygon (NP) Γ is the convex hull of M. Γ consists of one vertex $\gamma = \gamma(0)(\mu = 0, \nu = 0)$ or is the union of edges $\gamma = \gamma(1) \in \Gamma$ together with their vertices.

(3) The edge $\gamma = \gamma(1) \in \Gamma$ is called \emph{special} and is denoted as $\gamma^\mu, \gamma^\nu, \gamma^\mu, \gamma^\nu$ if both of its vertices belong to either the μ-axis or the ν-axis, or the line $\mu = \mu^0$ or the line $\nu = \nu^0$, respectively; the edge $\gamma(1)$ is called \emph{standard} otherwise. Index α of an edge γ is the number $\alpha = \alpha(\gamma) = \tan(\phi)$, where ϕ is the angle between the edge and the negative direction of the ordinate axis ν; the special edges $\gamma^\mu, \gamma^\mu, \gamma^\nu, \gamma^\nu$ have indexes $\alpha = 0$ and $\alpha = \infty$ respectively.

(4) The vertex $\gamma = \gamma(0)(\mu, \nu)$ is called a \emph{boundary} vertex if $\mu\nu = 0$ and \emph{standard} if not. The \emph{index} β of a vertex γ is $\beta = \beta(\gamma) = q_{\mu\nu}/p_{\mu\nu}$ if $p_{\mu\nu} \neq 0$ and $\beta = 0$ if $p_{\mu\nu} \neq 0$.

(5) Inscribe Γ into the rectangle $O_{00}(\mu = \nu = 0)$, $O_{\infty0}(\mu, 0)$, $O_{0\infty}(0, \nu)$, $O_{\infty\infty}(\mu^0, \nu^0)$, where $\mu^0 = \max_{\mu}(\mu, \nu, \mu, \nu) \in M$, $\nu^0 = \max_{\nu}(\mu, \nu, \mu, \nu) \in M$. We call the Newton diagrams (ND) $\Gamma_{00}, \Gamma_{\infty0}, \Gamma_{0\infty}, \Gamma_{\infty\infty}$ the parts of Γ which are visible from the corners $O_{00}, O_{\infty0}, O_{0\infty}, O_{\infty\infty}$ respectively. Thus $\Gamma = \Gamma_{00} \cup \Gamma_{\infty0} \cup \Gamma_{0\infty} \cup \Gamma_{\infty\infty} \cup \gamma^\mu \cup \gamma^\nu \cup \gamma^\mu \cup \gamma^\nu$. Denote coherent sets $M_\Gamma = M \cap \Gamma, M_{\Gamma_{00}} = M \cap \Gamma_{00}, M_{\Gamma_{\infty0}} = M \cap \Gamma_{\infty0}, M_{\Gamma_{0\infty}} = M \cap \Gamma_{0\infty}, M_{\Gamma_{\infty\infty}} = M \cap \Gamma_{\infty\infty}, M_{\Gamma} = M \cap \Gamma$, where γ is an edge or a vertex of Γ. Vector fields $\Omega_{\Gamma}(x)$, $\Omega_{\Gamma_{00}}(x)$, $\Omega_{\Gamma_{\infty0}}(x)$, $\Omega_{\Gamma_{0\infty}}(x)$, $\Omega_{\Gamma_{\infty\infty}}(x)$ and $\Omega_{\Gamma}(x)$ are called the \emph{truncations} of $\Omega(x)$ (and system (1.1)) onto the corresponding sets. In particular, $\Omega_{\Gamma}(x)$ is a vector field with \textit{fixed Newton polygon} Γ; $\Omega_{\Gamma_{00}}(x)$ is
a vector field with fixed Newton diagram Γ_{00}. Let $\Omega(x) \equiv \Omega(X_1, X_2)$ be defined by systems (1.1), (1.2), which is presented in the form

$$\begin{align*}
\frac{dx_1}{dt} &= X_1(x_1, x_2) \equiv x_1(P_1^\gamma(x_1, x_2) + \phi_1(x_1, x_2)), \\
\frac{dx_2}{dt} &= X_2(x_1, x_2) \equiv x_2(P_2^\gamma(x_1, x_2) + \phi_2(x_1, x_2)), \\
P_1^\gamma &= \sum_{(\mu, \nu) \in M_\gamma} p_{\mu \nu} x_1^\mu x_2^\nu, \quad P_2^\gamma = \sum_{(\mu, \nu) \in M_\gamma} q_{\mu \nu} x_1^\mu x_2^\nu; \\
\phi_1 &= \sum_{(\mu, \nu) \in M - M_\gamma} p_{\mu \nu} x_1^\mu x_2^\nu, \quad \phi_2 = \sum_{(\mu, \nu) \in M - M_\gamma} q_{\mu \nu} x_1^\mu x_2^\nu.
\end{align*}$$

Then the truncated vector field is $\Omega_\gamma(x) \equiv \Omega_\gamma(X_1^{\gamma}, X_2^{\gamma})$, where $X_1^{\gamma} \equiv x_1 P_1^{\gamma}(x_1, x_2)$, $X_2^{\gamma} \equiv x_2 P_2^{\gamma}(x_1, x_2)$.

![Figure 1](image)

Figure 1. (a) Γ is the Newton polygon of the system $x'_1 = x_1 P_1(x_1, x_2)$, $x'_2 = x_2 P_2(x_1, x_2)$, where $P_1(x_1, x_2) = p_{10} x_1 + p_{20} x_2^2 + p_{30} x_1^2 x_2 + p_{32} x_1^2 x_2^2 + p_{45} x_1^4 x_2^2 + p_{55} x_1^5 x_2^2 + p_{30} x_2^3$, $P_2(x_1, x_2) = q_{10} x_1 + q_{20} x_2^2 + q_{32} x_1^2 x_2^2 + q_{45} x_1^4 x_2^2 + q_{52} x_1^5 x_2^2 + q_{36} x_1^3 x_2^6 + q_{50} x_2^5 + q_{03} x_2^3$. Support $M = M_\Gamma$ consists of points $(1, 0), (2, 0), (5, 2), (4, 5), (3, 6), (0, 5), (0, 3); \Gamma = \Gamma_{00} \cup \Gamma_{\infty 0} \cup \Gamma_{0\infty} \cup \Gamma_{\infty \infty} \cup \gamma \mu \cup \gamma \nu$, where $\Gamma_{00} \equiv \gamma_1$ with index $\alpha_1 = 1/3, \Gamma_{\infty 0} \equiv \gamma_3$ with index $\alpha_3 = 4/3, \Gamma_{0\infty} \equiv \gamma_6$ with index $\alpha_6 = -3, \Gamma_{\infty \infty} \equiv \gamma_4 \cup \gamma_5, (\alpha_4 = 1/3, \alpha_5 = 1)$ and $\gamma \mu \equiv \gamma_7, (\alpha_7 = 0), \gamma \nu \equiv \gamma_2, (\alpha_2 = \infty)$ are special edges.

(b) A part of Newton diagram Γ_{00} containing consequent edges $\gamma_{i-1}^{(1)}$, $\gamma_i^{(1)}$, $\gamma_{i+1}^{(1)}$ and edge $\gamma_i^{(1)}$ is bounded by vertices $\gamma_i^{(0)}(\mu_i, \nu_i)$, $\gamma_{i+1}^{(0)}(\mu_{i+1}, \nu_{i+1})$.
If \(\gamma \) is a vertex \((\mu, \nu)\), a special edge, say \(\gamma = \gamma^\mu \), or a standard edge \(\gamma^\alpha \) with index \(\alpha \), then

\[
\begin{align*}
(2.2) \quad P_1^\gamma(x_1, x_2) &= p_{\mu, \nu} x_1^\mu x_2^\nu, \\
(2.3) \quad P_2^\gamma(x_1, x_2) &= x_1^\mu \sum_{\nu} p_{\mu, \nu} x_2^\nu, \\
(2.4) \quad P_1^\gamma(x_1, x_2) &= \sum_{\mu + \alpha \nu = \sigma} p_{\mu, \nu} x_1^\mu x_2^\nu, \quad P_2^\gamma(x_1, x_2) = \sum_{\mu + \alpha \nu = \sigma} q_{\mu, \nu} x_1^\mu, \quad (\mu, \nu) \in M_\gamma,
\end{align*}
\]

respectively. Thus, a truncated vector field \(\Omega_\gamma(x) \) is defined by the integrable system \((2.1)\).

Definition (6). The vector field \(\Omega_\Gamma(x) \) of the Poincaré sphere by systems \((1.1)\)–\((1.2)\), \((1.1)\)–\((1.4)\) or \((1.1)\)–\((1.6)\), where \(a_1 a_2 = 0 \) in one of the \(x, z \), \(u \)-coordinates, if the following statements are fulfilled: (i) index \(\beta \) of any interior vertex of \(\Gamma \) is not equal to the indexes of the adjacent edges, and index \(\beta \) of any boundary vertex is not equal to \(\alpha = 0, \infty \); (ii) for any edge \(\gamma \) (having index \(\alpha \)) functions \(P_1^\gamma(1, \omega), P_2^\gamma(1, \omega) \) have no common non-zero roots; (iii) the function \(F^\alpha(\omega) = -\alpha P_1^\alpha(1, \omega) + P_2^\alpha(1, \omega) \) has no multiple non-zero roots.

According to the definition of non-degeneracy we can state

Proposition 2.1. Among all vector fields \(\Omega_\Gamma(x) \) with the same Newton polygon \(\Gamma \) the set of \(\Gamma \)-non-degenerate vector fields is open and dense.

2.2. Asymptotics to equilibria.

Theorem A. (1) Let \(A(a_1, a_2) \) be a singular point of the \(\Gamma \)-non-degenerate vector field \(\Omega_\nu(x) \) given in the Poincaré sphere by systems \((1.1)\)–\((1.2)\), \((1.1)\)–\((1.4)\) or \((1.1)\)–\((1.6)\), where \(a_1 a_2 = 0 \) in coordinates \((\nu_1, \nu_2) = (x_1, x_2) \) or \((\nu_1, \nu_2) = (z_1, z_2) \), or \((\nu_1, \nu_2) = (u_1, u_2) \). Any orbit of \(\Omega(x) \) which tends to \(A \) for \(t \to \infty \) or \(t \to -\infty \) in the phase coordinates \((\nu_1, \nu_2) \) has either power or trivial asymptotics; i.e., it can be presented in the form

\[
(2.5) \quad \nu_2 - a_2 = k \nu_1^\alpha (1 + o(1)), \quad \nu_1 - a_1 = \tilde{k} \nu_2^\beta (1 + o(1)),
\]

where \((a_2, \rho \geq 0), (a_1, \tilde{\rho} \geq 0), \) constant \(k \neq 0 \) if \(\rho > 0 \), \(\tilde{k} \neq 0 \) if \(\tilde{\rho} > 0 \).

(2) Let \(O(0, 0) \) be a singular point of the \(\Gamma \)-non-degenerate vector field \(\Omega_\nu(x) \) (i.e., \(a_1 = a_2 = 0 \)). Then \(\rho \tilde{\rho} = 1 \) in \((2.5)\). In \(x \)-coordinates the exponent \(\rho \) coincides with index \(\alpha \) of one of the edges \(\gamma^{(1)} \in \Gamma \) or coincides with index \(\beta \) of one of the vertices \(\gamma^{(0)} \in \Gamma \); \(\rho = \alpha \) if the function \(F^\alpha(\omega) = -\alpha P_1^\alpha(1, \omega) + P_2^\alpha(1, \omega) \) has root \(\omega = k \neq 0 \), \(\rho = \beta \) if the vertex is interior and \(\beta \) belongs to an interval composed by indexes of edges that are adjacent to this vertex.

The rest of the paper is organized as follows. In Section 3 we show the connections between power changes of variables in system \((1.1), (1.2)\) and transformations of its Newton polygon. In Section 4 we provide a complete proof of Theorem A.
3. Power substitutions in system (1.1) and transformations of NP

3.1. **Auxiliary statements.** Let us consider the question of how the change of the variables in systems (1.1), (1.2) affects NP Γ. Denote $\tilde{\Gamma}$ as the transformed NP Γ, $\Omega_{\tilde{\Gamma}} \equiv \Omega_{\Gamma}$ the transformed vector field Ω_{Γ}, etc., keeping the “initial” denotation supplemented by the bar. The following statement holds:

Proposition 3.1. The change of the independent variable in system (1.1),

$$dt = x_1^{l_1}x_2^{l_2}d\tau, \quad l_1, l_2 \in \mathbb{R},$$

induces the linear transformation $L : \Gamma \rightarrow \tilde{\Gamma}$ shifting by the vector (l_1, l_2) in the plane (μ, ν). L is invertible and $L^{-1} : \tilde{\Gamma} \rightarrow \Gamma$ corresponds to the change $d\tau = x_1^{-l_1}x_2^{-l_2}dt$.

Consider the power change of the variables in system (1.1):

$$(x_1, x_2) = (\xi_1, \xi_2) \rightarrow (x_1, x_2) = (\xi_1^{e_1}, \xi_2^{e_2}, \xi_3^{e_3}, \xi_4^{e_4})$$

$E = \begin{pmatrix} e_1 & e_2 \\ e_3 & e_4 \end{pmatrix}, \quad \Delta = \text{det}(E) \quad (x_1, x_2) \in \mathbb{R}_0^2.$

If $\Delta \neq 0$, then (3.2) has the inverse $(\xi_1, \xi_2) = (x_1, x_2)^{E^{-1}}$ and converts (1.1) to the form:

$$(3.3) \quad \frac{d\xi_1}{d\tau} = \Xi_1(\xi_1, \xi_2) = \xi_1^{e_1}H_1(\xi_1, \xi_2) = \xi_1(e_4P_1(x_1, x_2) - e_3P_2(x_1, x_2)), \quad \Xi_2(\xi_1, \xi_2) = \xi_2(\xi_3^{e_3} - e_3P_1(x_1, x_2) + e_3P_2(x_1, x_2)), \quad \Xi_2(\xi_1, \xi_2) = \xi_2(\xi_3^{e_3} - e_3P_1(x_1, x_2) + e_3P_2(x_1, x_2)).$$

$\Xi_2 = (e_3P_1 - e_4P_2)$ and $\Xi_3 = (e_4P_1 - e_3P_2)$.

Let \overline{M} be the support of system (3.3). Comparing powers (μ, ν), $(\overline{\mu}, \overline{\nu})$ of systems (1.1), (1.2) and (3.3) we see that the change (3.2) induces a linear transformation $G : M \rightarrow \overline{M}$ with the matrix $E^{T} : (\mu, \nu) \rightarrow (\overline{\mu}, \overline{\nu})$: $\overline{\mu} = e_3\mu + e_4\nu, \overline{\nu} = e_2\mu + e_3\nu$. If $\Delta \neq 0$, then inverse to G is given by G^{-1}, which has the matrix

$$(E^{T})^{-1} = \frac{1}{\Delta} \begin{pmatrix} e_4 & -e_2 \\ -e_3 & e_1 \end{pmatrix}, \quad (\overline{\mu}, \overline{\nu}) = G^{-1}(\mu, \nu);$$

G^{-1} transforms theNewton polygon $\Gamma \rightarrow \tilde{\Gamma}$ such that the vector fields $\Omega_{\tilde{\Gamma}}$ and Ω_{Γ} completely define one another. The systems can be non-equivalent only when their equilibria, in particular at the coordinate axes. To avoid this “non-equivalency” we use the operators $L \circ G$ and $(L \circ G)^{-1}$.

Lemma 3.1 (§2, [9]). (1) The indexes of the vertices and edges of Γ, which are obtained from Γ by the transformation L, are identical to those of Γ.

(2) If $\Delta \neq 0$, then the transformation $G^{-1} : \Gamma_{\Omega(x)} \rightarrow \Gamma_{\overline{\Omega}(x)}$ converts any edge and any vertex of $\Gamma_{\Omega(x)}$ into the edge and the vertex of $\Gamma_{\overline{\Omega}(x)}$. Indexes $\alpha, \overline{\alpha}$ of the edges $\gamma^{(1)}$, $\overline{\gamma}^{(1)}$ and $\beta, \overline{\beta}$ of vertices $\gamma^{(0)}$, $\overline{\gamma}^{(0)}$ are expressed by the formulas

$$(3.4) \quad \overline{\alpha} = (ae_1 - e_3)/(-e_3, -e_2), \quad \overline{\beta} = (\beta e_4 - e_3)/(e_4 - \beta e_2).$$
Important applications of Lemma 3.1 are given by the following statement.

Proposition 3.2. (1) Let \(\gamma^{(1)} \in \Gamma_{00} \) be a standard edge with index \(\alpha \). The linear transformation \((L_1 \circ G_1)^{-1}\) with matrix \(E_1 = \begin{pmatrix} 1 & 0 \\ \alpha_i & 1 \end{pmatrix} \) and \((l_1, l_2) = (\mu + \alpha \nu, 0)\), \((\mu, \nu) \in M_\gamma\), converts \(\gamma^{(1)} \) into the special edge \(\gamma^\mu \) (see Figure 2(a), (b)). The linear transformation \((L_2 \circ G_2)^{-1}\) with matrix \(E_2 = \begin{pmatrix} 1/\alpha_0 & 1 \\ \alpha_{i+1} & \alpha_i \end{pmatrix} \) and \((l_1, l_2) = (\mu, (\mu + \alpha \nu)/\alpha)\), \((\mu, \nu) \in M_\gamma\), converts \(\gamma^{(1)} \) into the special edge \(\gamma^\nu \) (see Figure 2(a), (c)).

(2) Let \(\gamma^{(0)}(\mu, \nu) \in \Gamma_{00} \) be an interior vertex, which is common for edges \(\gamma_1^{(1)}, \gamma_2^{(1)} \) (having indexes \(0 < \alpha_1 < \alpha_2 \)). The linear transformation \((L_3 \circ G_3)^{-1}\) with matrix \(E_3 = \begin{pmatrix} 1/(\alpha_2 - \alpha_1) & 1 \\ \alpha_2/(\alpha_2 - \alpha_1) & \alpha_1 \end{pmatrix} \) and \((l_1, l_2) = (\mu + \alpha_1 \nu, \nu)\) converts \(\gamma^{(0)}(\mu, \nu) \to \gamma^{(0)}(0, 0) \in \Gamma_{00} \) such that \(\Gamma_{00} \) consists of only this vertex (see Figure 2(a), (d)).

3.2. Newton diagrams and Poincaré coordinates.

Poincaré changes (1.3) and (1.5) are particular cases of changes (3.2) with \(E_1 = \begin{pmatrix} -1/\alpha_i \\ 1 \end{pmatrix} \) and \(E_2 = \begin{pmatrix} -1/\alpha_i \\ 1 \end{pmatrix} \), respectively. Supplemented by the change of independent variable (3.1), where \(l_4 = \sigma, l_2 = 0 \) for \(L_1 \) and \(l_2 = \sigma, l_1 = 0 \) for \(L_2 \) with \(\sigma \equiv \max_{(\mu, \nu) \in M_\gamma}(\mu + \nu) \), these changes transform the vector field \(\Omega(x) \) defined by system (1.1), (1.2) to the vector...
fields $\Omega(z)$ and $\Omega(u)$ defined by systems (1.1), (1.4) and (1.1), respectively. Let Γ be a Newton polygon of (1.1), (1.2) and Γ_1, Γ_2 be Newton polygons of after transformations $(L_1 \circ G_1)^{-1}$ with $E = E_1$ and $(L_2 \circ G_2)^{-1}$ with $E = E_2$, and let $\Gamma_{00} \in \Gamma_1$, $\Gamma_{00} \in \Gamma_2$ be their Newton diagrams. To find the “preimages” of Γ_{00}, Γ_{00} under transformations G_1^{-1}, G_2^{-1} we introduce coherent open polygons $\widehat{\Gamma}_1 = (\Gamma_{00} \cup \gamma^\alpha \cup \Gamma_{00}^\alpha \leqslant 1) \subset \Gamma$, $\widehat{\Gamma}_2 = (\Gamma_{00} \cup \gamma^\alpha \cup \Gamma_{00}^\alpha > 1) \subset \Gamma$ (see Figure 3(a),(b),(c)), where $\Gamma_{00} < 1$ and $\Gamma_{00} > 1$ are parts of Γ_{00} that contain edges γ with indexes $\alpha < 1$ and with indexes $\alpha > 1$, respectively, or $\widehat{\Gamma}_1 = \gamma(0) = \widehat{\Gamma}_2$ if $\Gamma_{00} \leqslant 1$, $\Gamma_{00} \geqslant 1$, Γ_{00} consist of one point $\gamma(0)$.

According to Lemma 3.1 we have from formula (3.4) that for $E = E_1$ and $E = E_2$, respectively,

\begin{align}
(3.5) & \quad \alpha = 1 - \alpha, \quad \beta = 1 - \beta, \\
(3.6) & \quad \alpha = \alpha/(\alpha - 1), \quad \beta = \beta/(\beta - 1),
\end{align}

where $\alpha = \alpha(\gamma(1) \in \Gamma)$, $\beta = \beta(\gamma(0) \in \Gamma)$, $\alpha \equiv \alpha(\gamma \in \Gamma)$, $\beta \equiv \beta(\gamma(0) \in \Gamma)$. After additional algebraic verifications we prove the following statement.

Theorem 3.1 (see Figure 3(a),(b),(c)). Γ_{00} is the one-to-one image of the union $\widehat{\Gamma}_1$ under transformation $(L_1 \circ G_1)^{-1}$ and the union $\widehat{\Gamma}_2$ under transformation $(L_2 \circ G_2)^{-1}$; the edge $\gamma^\alpha \in \Gamma_{00}$ with $\alpha = 1$ transforms to the edge $\gamma^\beta \in \Gamma_1$ under $(L_1 \circ G_1)^{-1}$ and to the edge $\gamma^\beta \in \Gamma_2$ under $(L_2 \circ G_2)^{-1}$.

It is straightforward to verify the following statement, which describes the conditions of existence of isolated singular points $A(a_1, a_2)$, $a_1a_2 = 0$ in the non-degenerate vector field $\Omega_{\Gamma}(x)$.

Proposition 3.3. Let Ω_{Γ} be a Γ-non-degenerate vector field given by (1.1). Then

1. point $(0, 0)$ is the isp of vector field Ω_{Γ} if and only if it is isp of $\Omega_{\Gamma_{00}}$;
2. point $A(0, a_2)$, $a_2 = 0$ (A(1, 0), $a_1 = 0$) is the isp of Ω_{Γ} if and only if Γ contains a special edge $\gamma^\alpha(\gamma^\alpha)$ such that the function $F^\alpha(x_2) \equiv P_2(x_2) \equiv P_2(x_1, 0)$ has a root $a_1 = (x_1, 0)$.

According to Theorem 3.1 analysis of all asymptotics of orbits of the Γ-non-degenerate vector field Ω_{Γ} is reduced to the analysis of asymptotics of orbits of the vector fields $\Omega_{\Gamma_{00}}$, $\Omega_{\Gamma_{00}}$, Ω_{γ^α}, Ω_{γ^β}.

4. Proof of Theorem A. Description of asymptotics

4.1. Andronov’s statement. Orbits of the γ-non-degenerate vector field and its γ-truncation. Further, we use the statement, based on Lemmas 1 and 2 in Chapter IV of [1].

Lemma 4.1. Let $O(0, 0)$ be an isolated simple equilibrium of the C^1-system (1.1), which has a triangular Jordan matrix at O with non-zero eigenvalues λ_1, λ_2. If $\lambda_1 \lambda_2 > 0$, then O-orbits of the vector field defined by this system have asymptotics $x_2 = kx_1^\lambda_2/\lambda_1(1 + o(1))$, $k \neq 0$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Further, we consider systems (1.1), (1.2) in the form of (2.1):

$$\begin{align*}
x'_1 &= x_1 P_1(x_1, x_2) \equiv x_1 (P_1^γ(x_1, x_2) + φ_1(x_1, x_2)), \\
x'_2 &= x_2 P_2(x_1, x_2) \equiv x_2 (P_2^γ(x_1, x_2) + φ_2(x_1, x_2)),
\end{align*}$$

(4.1)

where $P_1^γ(x_1, x_2), P_2^γ(x_1, x_2), φ_1(x_1, x_2), φ_2(x_1, x_2)$ present specifying functions. Let

$\gamma \equiv \gamma^{(1)} \in Γ_{00}$.

4.2. Asymptotics of the orbits tending to an equilibrium with one zero coordinate.

Proposition 4.1. Let the $Γ$-non-degenerate vector field $Ω_Γ$ given by (4.1), (1.2), have an isolated singular point $A_2(x_1 = 0, x_2 = a_2 \neq 0)$ and/or $A_1(x_1 = a_1 \neq 0, x_2 = 0)$. Then orbits tending to A_2 (A_1) with $x_1 \to 0$ ($x_2 \to 0$) have power asymptotics (2.5) or trivial $x_1 = 0, x_2 = a_2$ and/or $x_1 = a_1, x_2 = 0$.

Proof. Let us consider the first case: $P_2(0, a_2) = 0, P_1(0, a_2) \neq 0$. According to Proposition 3.3, $γ \equiv γ^{α}, α(γ) = 0$, in (4.1) functions $P_1^γ(x_1, x_2) = \sum_{α} P_{α} x_2^α, P_2^γ(x_1, x_2) = \sum_{γ} q_{γ} x_2^γ$ ($P_1^γ, P_2^γ$ are of the form (2.3)), and $φ_1(0, x_2) = φ_2(0, x_2) = 0$ (see, for example, edge $γ$ in Figure 3(a)). Due to conditions of non-degeneracy (ii), (iii) (see Definition (6)), a_2 is a simple root of function $P_2^{γ^α}(0, x_2)$ and $P_1^{γ^α}(1, a_2) \neq 0$.

Supposing that system (4.1) is continuously differential in both variables, we find eigenvalues at $(0, a_2)$: $λ_1 = P_1^{γ^α}(0, a_2), λ_2 = a_2 P_2^{γ^α}(0, a_2), λ_1 λ_2 \neq 0$. According to
Lemma 4.1 the vector field defined by (4.1) has orbits of the form (2.5): \(x_2 - a_2 = k x_1^{\lambda_2/\lambda_1} (1 + o(1)) \), where \(k \) is an arbitrary constant if \(\lambda_1 \lambda_2 > 0 \) and \(k = 0 \) if \(\lambda_1 \lambda_2 < 0 \).

The second case can be considered in an analogous way. Proposition 4.1 is proven.

4.3. Asymptotics to O-orbits. The following theorem has been formulated and proven for polynomial vector fields in [8] (see also [7]). The case \(\Gamma_{00} \) consisting of one standard edge was considered in [10].

Theorem 4.1. (i) Asymptotics of O-orbits of the \(\Gamma \)-non-degenerate vector field \(\Omega(x) \) coincide with the asymptotics of O-orbits of \(\Omega_{\gamma_0}(x) \) and have the form (2.5):

\[
x_2 = k x_1^{\rho}(1 + o(1)),
\]

where the exponent \(\rho > 0 \) equals the index \(\alpha \) of one of the edges \(\gamma^{(1)} \in \Gamma_{00} \) or equals the index \(\beta \) of one of the vertices \(\gamma^{(0)} \in \Gamma_{00} \).

(ii) \(\rho = \alpha \) if function \(F^\alpha(\xi_2) = -\alpha P_1^\alpha(1, \xi_2) + P_2^\alpha(1, \xi_2) \) has a root \(\xi_2 = k \neq 0 \), which serves the coefficient of (2.5); \(\rho = \beta \) and coefficient \(k \neq 0 \) is any number if \(\beta \in (\hat{\alpha}, \hat{\alpha}) \), where \(0 \leq \hat{\alpha} < \hat{\alpha} \leq \infty \) are indexes of edges that are adjacent to this vertex, \(\hat{\alpha} = 0 \) if vertex \(\gamma^{(0)}(0, \nu) \in \Gamma_{00} \) and/or \(\hat{\alpha} = \infty \) if vertex \(\gamma^{(0)}(\mu, 0) \in \Gamma_{00} \).

Below we prove Theorem 4.1 under the assumption that point \(O \) is the isp of the \(\Gamma \)-non-degenerate continuously differentiable vector field \(\Omega(x) \) defined by (1.1), (1.2).

Proof of Theorem 4.1. (i) Let ND \(\Gamma_{00} \) consist of one vertex \(\gamma^{(0)}(\mu_0, \nu_0) \). Because \(O(0, 0) \) is an isolated point, \(\mu = \mu_0 = 0, \nu = \nu_0 = 0 \). Therefore system (4.1) is of the form (4.1), (2.2):

\[
P_1^\alpha(x_1, x_2) = \mu_0 = \lambda_1, P_2^\alpha(x_1, x_2) = \nu_0 = \lambda_2 \text{ such that } \mu_0 = \nu_0, \phi_1(0, x_2) = \phi_2(x_1, 0) = 0.
\]

According to Lemma 4.1 the system has O-orbits in the form (2.5) with \(\rho = \beta_0 = \mu_0/\nu_0 \), where the coefficient \(k \) is an arbitrary constant if \(\mu_0 \neq 0 \) (i.e., \(O \) is a node) and \(k = 0 \) if \(\mu_0 = \nu_0 < 0 \) (\(O \) is a saddle whose separatrices are \(x_1 = 0, x_2 \neq 0 \) and \(x_2 = 0, x_1 \neq 0 \)).

(ii) Let ND \(\Gamma_{00} \) contain the unique edge \(\gamma = \gamma^{(1)} \) (having index \(\alpha \)) which is bounded by vertices \(\gamma^{(0)}(\mu_1, \nu_1), \gamma^{(0)}(\mu_2, \nu_2) \), \(\mu_1 = 0 < \mu_2, \nu_1 = \nu_2 = 0 \), whose indexes are \(\beta_1, \beta_2 \). Then system (4.1) is of the form (2.1), (2.4), where \(P_1^\alpha(x_1, x_2) = -\mu_2 x_1^{\mu_2} x_2^{\mu_1} + P_2^\alpha(x_1, x_2) = \sum_{\nu + \nu = \sigma, \nu + \nu = \sigma} \lambda_{\mu, \nu} x_1^{\mu} x_2^{\nu} \).

Due to Proposition 3.2, change of variables (3.2): \(x_1 = \xi_1, x_2 = \xi_1^{\beta_1} \xi_2, \) supplemented by (3.1) with \((1, 2) = (\mu_2, 0) \), converts system (4.1) to the system with

\[
\begin{align*}
\bar{P}_1(\xi_1, \xi_2) &= P_1^\alpha(1, \xi_2) + \bar{\phi}_1(\xi_1, \xi_2), & \bar{P}_2(\xi_1, \xi_2) &= F^\alpha(\xi_2) + \bar{\phi}_2(\xi_1, \xi_2), \\
\bar{\phi}_1(0, \xi_2) &= \bar{\phi}_2(0, \xi_2), & F^\alpha(\xi_2) &= -\alpha P_1^\alpha(1, \xi_2) + P_2^\alpha(1, \xi_2).
\end{align*}
\]

With this change the edge \(\gamma^{(1)} \in \Gamma_{00} \subset \Gamma \) is transformed into the special edge \(\gamma^\alpha \in \Gamma_0 \) (see Figure 2(a),(b)), vertex \(\gamma^{(0)}(\mu_0, 0) \to \gamma^{(0)}(0, 0) \to \Gamma_{00}, \) where \(\gamma^{(0)}_0 \) is the unique vertex of \(\Gamma_{00} \), and \(\beta = \beta_2 - \alpha \) is the index of \(\gamma^{(0)}_0 \). According to Proposition 4.1 and conditions of non-degeneracy (ii), (iii) (see Definition (6)), if \(F^\alpha(\xi_2) \) has root \(\xi_2 = a_2 \neq 0 \), then the system (3.3) has an orbit with asymptotics \(\xi_2 - a_2 = o(1), o(1) \to 0 \) for \(\xi_1 \to 0 \). In such a case system (4.1) has an orbit with power asymptotics \(x_2 = a_2 x_1^{\beta_2}(1 + o(1)) \). The vertex \(\gamma^{(0)}_0 \in \Gamma_{00} \) has index \(\beta = q_{00}/\gamma_{00} \neq 0, \infty, \) where \(\gamma_{00} = P_1^\alpha(1, 0) = P_2^\alpha(0, 0) = F^\alpha(0) = -\alpha \mu_2 x_1^{\mu_2} + q_{00} + \mu_2 \) (see Figure 2(a),(d)). Therefore, we have the case which has been discussed in part (i): system (3.3) has an orbit with asymptotics \(\xi_2 = k \xi_1^{\beta_2}(1 + o(1)) \) or trivial \(\xi_2 = 0 \). In these variables \((x_1, x_2) \) these asymptotics obtain the form \(x_2 = k x_1^{\beta_2}(1 + o(1)) \).
The second change of variables (3.2): \(x_1 = \xi_1 \xi_1^{1/\alpha}, \ x_2 = \xi_2 \), supplemented by (3.1) with \((l_1, l_2) = (0, \nu_1)\), lead to the transformation of edge \(\gamma^{(1)} \) to the special edge \(\gamma^{(0)} \) (see Figure 2(a),(c),(d)) such that vertex \(\gamma^{(0)}_1(0, \nu_1) \rightarrow \gamma^{(0)}_{l_0} \in \Gamma_{00} \), where \(\gamma^{(0)}_{l_0} \) is the unique vertex of \(\Gamma_{00} \). Due to conditions of non-degeneracy: \(\beta_1 \neq \alpha, \infty \), index of \(\gamma^{(0)}_{l_0} \): \(\beta = \beta_1 - \alpha \neq 0, \infty \). Repeating the above arguments we finish the proof of statements considering the case.

Actually, we have proven that \(O \)-orbits of the \(\Gamma_{00} \)-non-degenerated vector field \(\Omega_f \) can have only power or trivial asymptotics and described exponents and coefficients of these asymptotics in the form given in Theorem 4.1.

(iii) Note now that according to Lemma 3.1 and Proposition 3.2 any system (4.1) whose ND \(\Gamma_{00} \) contains \(N > 1 \) standard edges by changes of variables (3.2) and (3.1) can be reduced to the system whose ND \(\Gamma_{00} \) contains the only standard edge, and the “new” system will be \(\Gamma_{00} \)-non-degenerate if the initial one was \(\Gamma_{00} \)-non-degenerate. Thus, all asymptotics of \(O \)-orbits are the same as described in Theorem 4.1. Theorem 4.1 is proven.

(iv) Taking into consideration the statements of Theorem 3.1, we can state that orbits tending to singular points of vector fields defined by systems (1.1), (1.4) and (1.6) have power asymptotics as well. For example, let an orbit of system (1.4) be of the form \(z_2 = kz_1^2(1 + o(1)); \) i.e., \(\sigma = \alpha(\tau), \ \tau \in \Gamma_{00} \) and \(k \neq 0 \) is a root of the function \(F(\omega) \). Due to (1.5) and (3.4) \(x_2 = kx_1^2(1 + o(1)) = kx_1^2(1 + o(1)), \) where \(\alpha = \alpha(\gamma) \) and \(\gamma \) is the preimage of edge \(\tau \) under the transformation with matrix \(E_1 \) (see (3.3)). In an analogous way one can verify other cases and show that exponents and coefficients of the mentioned asymptotics are expressed in terms of indexes of vertices and edges of the Newton polygon. This finishes the proof of Theorem A.

Acknowledgement

The author is grateful to the anonymous referee for comments that helped to improve this manuscript and figures.

References

Department of Mathematics, Howard University, Washington, DC 20059
E-mail address: fberezovskaya@howard.edu