Eulerian relative equilibria of the curved $3$-body problems in $\mathbf {S}^2$
HTML articles powered by AMS MathViewer
- by Shuqiang Zhu
- Proc. Amer. Math. Soc. 142 (2014), 2837-2848
- DOI: https://doi.org/10.1090/S0002-9939-2014-11995-2
- Published electronically: May 7, 2014
- PDF | Request permission
Abstract:
We consider the gravitational motion of $n$ point particles with masses $m_1$, $m_2$, $\ldots$, $m_n>0$ on surfaces of constant Gaussian curvature. Based on the work of Diacu and his co-authors, we derive the law of universal gravitation in spaces of constant curvature. Using the results, we examine all possible $3$-body configurations that can generate geodesic relative equilibria. We prove the existence of all acute triangle Eulerian relative equilibria and get a necessary and sufficient condition for the existence of obtuse triangle Eulerian relative equilibria. We also show that any three positive masses can generate Eulerian relative equilibria.References
- V. I. Arnol′d, Mathematical methods of classical mechanics, 2nd ed., Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York, 1989. Translated from the Russian by K. Vogtmann and A. Weinstein. MR 997295, DOI 10.1007/978-1-4757-2063-1
- W. Bolyai and J. Bolyai, Geometrische Untersuchungen, Hrsg. P. Stäckel, Teubner, Leipzig-Berlin, 1913.
- José F. Cariñena, Manuel F. Rañada, and Mariano Santander, Central potentials on spaces of constant curvature: the Kepler problem on the two-dimensional sphere $S^2$ and the hyperbolic plane $H^2$, J. Math. Phys. 46 (2005), no. 5, 052702, 25. MR 2143000, DOI 10.1063/1.1893214
- Florin Diacu, Relative equilibria of the curved $N$-body problem, Atlantis Studies in Dynamical Systems, vol. 1, Atlantis Press, Paris, 2012. MR 2976223, DOI 10.2991/978-94-91216-68-8
- Florin Diacu, Ernesto Pérez-Chavela, and Manuele Santoprete, The $n$-body problem in spaces of constant curvature. Part I: Relative equilibria, J. Nonlinear Sci. 22 (2012), no. 2, 247–266. MR 2912328, DOI 10.1007/s00332-011-9116-z
- Florin Diacu, Polygonal homographic orbits of the curved $n$-body problem, Trans. Amer. Math. Soc. 364 (2012), no. 5, 2783–2802. MR 2888228, DOI 10.1090/S0002-9947-2011-05558-3
- B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern geometry—methods and applications. Part I, 2nd ed., Graduate Texts in Mathematics, vol. 93, Springer-Verlag, New York, 1992. The geometry of surfaces, transformation groups, and fields; Translated from the Russian by Robert G. Burns. MR 1138462, DOI 10.1007/978-1-4612-4398-4
- Herbert Goldstein, Classical Mechanics, Addison-Wesley Press, Inc., Cambridge, Mass., 1951. MR 0043608
- Valeriĭ V. Kozlov and Alexander O. Harin, Kepler’s problem in constant curvature spaces, Celestial Mech. Dynam. Astronom. 54 (1992), no. 4, 393–399. MR 1188291, DOI 10.1007/BF00049149
- N. I. Lobachevsky, The new foundations of geometry with full theory of parallels [in Russian], 1835-1838, in Collected Works, V. 2, GITTL, Moscow, 1949, p. 159.
- Ernesto Pérez-Chavela and J. Guadalupe Reyes-Victoria, An intrinsic approach in the curved $n$-body problem. The positive curvature case, Trans. Amer. Math. Soc. 364 (2012), no. 7, 3805–3827. MR 2901235, DOI 10.1090/S0002-9947-2012-05563-2
- E. Schering, Die Schwerkraft im Gaussischen Raume, Nachr. Königl. Gesell. Wiss. Göttingen 13 July, 15 (1870), 311-321.
Bibliographic Information
- Shuqiang Zhu
- Affiliation: College of Mathematics and Yangtze Center, Sichuan University, Chengdu 610064, People’s Republic of China
- Email: shuqiangzhu@foxmail.com
- Received by editor(s): July 23, 2012
- Published electronically: May 7, 2014
- Communicated by: Walter Craig
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 142 (2014), 2837-2848
- MSC (2010): Primary 70-XX; Secondary 70F07, 70F15
- DOI: https://doi.org/10.1090/S0002-9939-2014-11995-2
- MathSciNet review: 3209337