SINGULAR EQUIVALENCES
INDUCED BY HOMOLOGICAL EPIMORPHISMS

XIAO-WU CHEN

(Communicated by Birge Huisgen-Zimmermann)

Abstract. We prove that a certain homological epimorphism between two algebras induces a triangle equivalence between their singularity categories. Applying the result to a construction of matrix algebras, we describe the singularity categories of some non-Gorenstein algebras.

1. Introduction

Let A be a finite dimensional algebra over a field k. Denote by A-mod the category of finitely generated left A-modules and by $\mathbf{D}^b(A$-mod) the bounded derived category. Following [20], the singularity category $\mathbf{D}_{\text{sg}}(A)$ of A is the Verdier quotient triangulated category of $\mathbf{D}^b(A$-mod) with respect to the full subcategory formed by perfect complexes; see also [4, 6, 16, 17, 23].

The singularity category measures the homological singularity of an algebra: the algebra A has finite global dimension if and only if its singularity category $\mathbf{D}_{\text{sg}}(A)$ is trivial. Meanwhile, the singularity category captures the stable homological features of an algebra ([6]).

A fundamental result of Buchweitz and Happel states that for a Gorenstein algebra A, the singularity category $\mathbf{D}_{\text{sg}}(A)$ is triangle equivalent to the stable category of (maximal) Cohen-Macaulay A-modules ([6, 14]), where the latter category is related to Tate cohomology theory ([2, 6]). This result specializes Rickard’s result ([23]) on self-injective algebras. For non-Gorenstein algebras, not much is known about their singularity categories ([7, 9]).

The following concepts might be useful in the study of singularity categories. Two algebras A and B are said to be singularly equivalent if there is a triangle equivalence between $\mathbf{D}_{\text{sg}}(A)$ and $\mathbf{D}_{\text{sg}}(B)$. Such an equivalence is called a singular equivalence; compare [21]. In this case, if A is non-Gorenstein and B is Gorenstein, then Buchweitz-Happel’s theorem applies to give a description of $\mathbf{D}_{\text{sg}}(A)$ in terms of (maximal) Cohen-Macaulay B-modules. We observe that a derived equivalence of two algebras, that is, a triangle equivalence between their bounded derived categories, naturally induces a singular equivalence. The converse is not true in general.
Let \(A \) be an algebra and let \(J \subseteq A \) be a two-sided ideal. Following [22], we call \(J \) a **homological ideal** provided that the canonical map \(A \to A/J \) is a homological epimorphism ([12]), meaning that the naturally induced functor \(D^b(A/J\text{-mod}) \to D^b(A\text{-mod}) \) is fully faithful.

The main observation we make is as follows.

Theorem. Let \(A \) be a finite dimensional \(k \)-algebra and let \(J \subseteq A \) be a homological ideal which has finite projective dimension as an \(A\text{-}A \)-bimodule. Then there is a singular equivalence between \(A \) and \(A/J \).

This paper is structured as follows. In Section 2, we recall some ingredients and then prove the Theorem. In Section 3, we apply the Theorem to a construction of matrix algebras and then describe the singularity categories of some non-Gorenstein algebras. In particular, we give two examples which extend in different manners an example considered by Happel in [14].

2. Proof of the Theorem

We will present the proof of the Theorem in this section. Before that, we recall from [25] and [15] some results on triangulated categories and derived categories.

Let \(T \) be a triangulated category. We will denote its translation functor by \([1] \). For a triangulated subcategory \(N \), we denote by \(T/N \) the Verdier quotient triangulated category. The quotient functor \(q: T \to T/N \) has the property that \(q(X) \simeq 0 \) if and only if \(X \) is a direct summand of an object in \(N \). In particular, if \(N \) is a **thick** subcategory, that is, it is closed under direct summands, we have that \(\text{Ker } q = N \). Here, for a triangle functor \(F \), \(\text{Ker } F \) denotes its essential kernel, that is, the (thick) triangulated subcategory consisting of objects on which \(F \) vanishes.

The following result is well known.

Lemma 2.1. Let \(F: T \to T' \) be a triangle functor which allows a fully faithful right adjoint \(G \). Then \(F \) induces uniquely a triangle equivalence \(T/\text{Ker } F \simeq T' \).

Proof. The existence of the induced functor follows from the universal property of the quotient functor. The result is a triangulated version of [11, Proposition I. 1.3]. For details, see [5, Propositions 1.5 and 1.6]. \(\square \)

Let \(F: T \to T' \) be a triangle functor. Assume that \(N \subseteq T \) and \(N' \subseteq T' \) are triangulated subcategories satisfying \(FN \subseteq N' \). Then there is a uniquely induced triangle functor \(\bar{F}: T/N \to T'/N' \).

Lemma 2.2 ([20, Lemma 1.2]). Let \(F: T \to T' \) be a triangle functor which has a right adjoint \(G \). Assume that \(N \subseteq T \) and \(N' \subseteq T' \) are triangulated subcategories satisfying the fact that \(FN \subseteq N' \) and \(GN' \subseteq N \). Then the induced functor \(\bar{F}: T/N \to T'/N' \) has a right adjoint \(\bar{G} \). Moreover, if \(G \) is fully faithful, so is \(\bar{G} \).

Proof. The unit and counit of \((F,G) \) induce uniquely two natural transformations \(\text{Id}_{T/N} \to GF \) and \(FG \to \text{Id}_{T'/N'} \), which are the corresponding unit and counit of the adjoint pair \((\bar{F}, \bar{G}) \); consult [19, Chapter IV, Section 1, Theorem 2(v)]. Note that the fully-faithfulness of \(G \) is equivalent to the fact that the counit of \((F,G) \) is an isomorphism. It follows that the counit of \((\bar{F}, \bar{G}) \) is also an isomorphism, which is equivalent to the fully-faithfulness of \(\bar{G} \); consult [19, Chapter IV, Section 3, Theorem 1]. \(\square \)
Let k be a field and let A be a finite dimensional k-algebra. Recall that A-mod is the category of finite dimensional left A-modules. We write $_AA$ for the regular left A-module. Denote by $D(A$-mod) (resp. $D^b(A$-mod)) the (resp. bounded) derived category of A-mod. We identify A-mod as the full subcategory of $D^b(A$-mod) consisting of stalk complexes concentrated at degree zero; see [15] Proposition I. 4.3.

A complex of A-modules is usually denoted by $X^\bullet = (X^n, d^n)_{n \in \mathbb{Z}}$, where X^n are A-modules and the differentials $d^n : X^n \to X^{n+1}$ are homomorphisms of modules satisfying $d^{n+1} \circ d^n = 0$. Recall that a complex in $D^b(A$-mod) is perfect provided that it is isomorphic to a bounded complex consisting of projective modules. The full subcategory consisting of perfect complexes is denoted by $\text{perf}(A)$. Recall from [6] Lemma 1.2.1 that a complex X^\bullet in $D^b(A$-mod) is perfect if and only if there is a natural number n_0 such that for each A-module M, $\text{Hom}_{D^b(A$-$\text{mod})}(X^\bullet, M[n]) = 0$ for all $n \geq n_0$. It follows that $\text{perf}(A)$ is a thick subcategory of $D^b(A$-mod). Indeed, it is the smallest thick subcategory of $D^b(A$-mod) containing $_AA$.

Let $\pi : A \to B$ be a homomorphism of algebras. The functor of restricting of scalars $\pi^* : B$-$\text{mod} \to A$-mod is exact, and it extends to a triangle functor $D^b(B$-$\text{mod}) \to D^b(A$-mod), which will still be denoted by π^*. Following [12], we call the homomorphism π a homological epimorphism provided that $\pi^* : D^b(B$-$\text{mod}) \to D^b(A$-mod) is fully faithful. By [12] Theorem 4.1(1)] this is equivalent to the fact that $\pi \otimes_A^L B : B \cong A \otimes_A^L B \to B \otimes_A^L B$ is an isomorphism in $D(A^e$-$\text{mod})$. Here, $A^e = A \otimes_k A^{op}$ is the enveloping algebra of A, and we identify A^e-mod as the category of A-A-bimodules.

Lemma 2.3 ([22] Proposition 2.2(a)]). Let $J \subseteq A$ be an ideal and let $\pi : A \to A/J$ be the canonical projection. Then π is a homological epimorphism if and only if $J^2 = J$ and $\text{Tor}^A_i (J, A/J) = 0$ for all $i \geq 1$.

In the situation of the lemma, the ideal J is called a homological ideal in [22]. As a special case, we call an ideal J a hereditary ideal provided that $J^2 = J$ and J is a projective A-A-bimodule; compare [22] Lemma 3.4).

Proof. The natural exact sequence $0 \to J \to A \xrightarrow{\pi} A/J \to 0$ of A-A-bimodules induces a triangle $J \to A \xrightarrow{\pi} A/J \to J[1]$ in $D^b(A^e$-$\text{mod})$. Applying the functor $- \otimes_A^L A/J$, we get a triangle $J \otimes_A^L A/J \to A/J \to A/J \otimes_A^L A/J \to J \otimes_A^L A/J[1]$. Then π is a homological epimorphism or, equivalently, $\pi \otimes_A^L J$ is an isomorphism if and only if $J \otimes_A^L A/J = 0$; see [13] Lemma I.1.7]. This is equivalent to the fact that $\text{Tor}^A_i (J, A/J) = 0$ for all $i \geq 0$. We note that $\text{Tor}^A_i (J, A/J) \simeq J \otimes_A A/J \simeq J/J^2$. □

Now we are in the position to prove the Theorem. Recall that for an algebra A, its singularity category $D_{sg}(A) = D^b(A$-$\text{mod})/\text{perf}(A)$. Moreover, a complex X^\bullet becomes zero in $D_{sg}(A)$ if and only if it is perfect. Here, we use the fact that $\text{perf}(A) \subseteq D^b(A$-$\text{mod})$ is a thick subcategory.

Proof of the Theorem. Write $B = A/J$. Since J, as an A-A-bimodule, has finite projective dimension, so it has finite projective dimension both as a left and right A-module. Consider the natural exact sequence $0 \to J \to A \to B \to 0$. It follows that B, both as a left and right A-module, has finite projective dimension. Moreover, for a complex X^\bullet in $D^b(A$-$\text{mod})$, $J \otimes_A^L X^\bullet$ is perfect. Indeed, take a bounded projective resolution $P^\bullet \to J$ as an A^e-module. Then $J \otimes_A^L X^\bullet \simeq P^\bullet \otimes_A X^\bullet$. This is a perfect complex, since each left A-module $P^i \otimes_A X^j$ is projective.
Denote by $\pi: A \to B$ the canonical projection. By the assumption, the functor $\pi^*: \text{D}^b(B\text{-mod}) \to \text{D}^b(A\text{-mod})$ is fully faithful. Since $\pi^*(B) = _AB$ is perfect, the functor π^* sends perfect complexes to perfect complexes. Then it induces a triangle functor $\pi^*: \text{D}_{sg}(B) \to \text{D}_{sg}(A)$. We will show that π^* is an equivalence.

The functor $\pi^*: \text{D}^b(B\text{-mod}) \to \text{D}^b(A\text{-mod})$ has a left adjoint $F = B \otimes_A^L -$: $\text{D}^b(A\text{-mod}) \to \text{D}^b(B\text{-mod})$. Here we use the fact that the right A-module B_A has finite projective dimension. Since F sends perfect complexes to perfect complexes, we have the induced triangle functor $\bar{F}: \text{D}_{sg}(A) \to \text{D}_{sg}(B)$. By Lemma 2.2 we have the adjoint pair (\bar{F}, π^*); moreover, the functor π^* is fully faithful. By Lemma 2.1 there is a triangle equivalence $\text{D}_{sg}(A)/\text{Ker} \bar{F} \simeq \text{D}_{sg}(B)$.

It remains to show that the essential kernel $\text{Ker} \bar{F}$ is trivial. For this, we assume that a complex X^\bullet lies in $\text{Ker} \bar{F}$. This means that the complex $F(X^\bullet)$ in $\text{D}^b(B\text{-mod})$ is perfect. Since π^* preserves perfect complexes, it follows that $\pi^*F(X^\bullet)$ is also perfect. The natural exact sequence $0 \to J \to A \to B \to 0$ induces a triangle $J \otimes_A^L X^\bullet \to X^\bullet \to \pi^*F(X^\bullet) \to J \otimes_A^L X^\bullet[1]$ in $\text{D}^b(A\text{-mod})$. Recall that $J \otimes_A^L X^\bullet$ is perfect. It follows that X^\bullet is perfect, since $\text{perf}(A) \subseteq \text{D}^b(A\text{-mod})$ is a triangulated subcategory. The proves that X^\bullet is zero in $\text{D}_{sg}(A)$.

The following special case of the Theorem is of interest.

Corollary 2.4. Let A be a finite dimensional algebra and $J \subseteq A$ a hereditary ideal. Then we have a triangle equivalence $\text{D}_{sg}(A) \simeq \text{D}_{sg}(A/J)$.

Proof. It suffices to observe by Lemma 2.3 that J is a homological ideal.

3. **Examples**

In this section, we will describe a construction of matrix algebras to illustrate Corollary 2.2. In particular, the singularity categories of some non-Gorenstein algebras are described.

The following construction is similar to [18, Section 4]. Let A be a finite dimensional algebra over a field k. Let M and N be a left and right A-module, respectively. Then $M \otimes_k N$ becomes an A-A-bimodule. Consider an A-A-bimodule monomorphism $\phi: M \otimes_k N \to A$. Then $\text{Im} \phi$ is a two-sided ideal of A. We require further that $(\text{Im} \phi)M = 0$ and $N(\text{Im} \phi) = 0$. The matrix $\Gamma = \begin{pmatrix} A & M \\ N & k \end{pmatrix}$ becomes an associative algebra via the following multiplication:

$$\begin{pmatrix} a & m \\ n & \lambda \end{pmatrix} \begin{pmatrix} a' & m' \\ n' & \lambda' \end{pmatrix} = \begin{pmatrix} aa' + \phi(m \otimes n') & am' + \lambda m' \\ na' + \lambda n' & \lambda \lambda' \end{pmatrix}.$$

For the associativity, we need the above requirement on $\text{Im} \phi$.

Proposition 3.1. Keep the notation and assumption as above. Then there is a triangle equivalence $\text{D}_{sg}(\Gamma) \simeq \text{D}_{sg}(A/\text{Im} \phi)$.

Proof. Set $J = \Gamma e \Gamma$ with $e = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. Observe that $\Gamma/J = A/\text{Im} \phi$. The ideal J is hereditary: $J^2 = J$ is clear, while the natural map $\Gamma e \otimes_k e \Gamma \to J$ is an isomorphism of Γ-Γ-bimodules and then J is a projective Γ-Γ-bimodule. The isomorphism uses the assumption that ϕ is mono. Then we apply Corollary 2.4.

Remark 3.2. The above construction contains the one-point extension and coextension of algebras, where M or N is zero. Hence Proposition 3.1 contains the results in [9, Section 4].

We will illustrate Proposition 3.1 by three examples. Two of these examples extend an example considered by Happel in [14]. In particular, based on results in [9], we obtain descriptions of the singularity categories of some non-Gorenstein algebras.

Recall from [14] that an algebra A is Gorenstein provided that both as a left and right module, the regular module A has finite injective dimension. It follows from [6, Theorem 4.4.1] and [14, Theorem 4.6] that in the Gorenstein case, the singularity category $\mathcal{D}_{sg}(A)$ is Hom-finite. This means that all Hom spaces in $\mathcal{D}_{sg}(A)$ are finite dimensional over k.

For algebras given by quivers and relations, we refer to [1, Chapter III].

Example 3.3. Let Γ be the k-algebra given by the following quiver Q with relations \{\[x^2, \delta x, \beta x, x\gamma, x\alpha, \beta\gamma, \delta\alpha, \beta\alpha, \delta\gamma, \alpha\beta - \gamma\delta\}\}. We write the concatenation of paths from right to left.

\[
\begin{array}{c}
1 \rightarrow x \rightarrow 2 \\
& \alpha \rightarrow \beta \\
\end{array}
\]

We have in Γ that $1 = e_1 + e_* + e_2$, where the e's are the primitive idempotents corresponding to the vertices. Set $\Gamma' = \Gamma/E_1 \Gamma$. It is an algebra with radical square zero, whose quiver is obtained from Q by removing the vertex 1 and the adjacent arrows.

We identify Γ with $A = \begin{pmatrix} A & k\alpha \\ k\beta & k \end{pmatrix}$, where the k in the southeast corner is identified with $e_1 E_1$, and $A = (1 - e_1) \Gamma (1 - e_1)$. The corresponding $\text{Im} \phi$ equals $k\alpha \beta$, and we have $A/\text{Im} \phi = \Gamma'$; consult the proof of Proposition 3.1. Then Proposition 3.1 yields a triangle equivalence $\mathcal{D}_{sg}(\Gamma) \simeq \mathcal{D}_{sg}(\Gamma')$.

The triangulated category $\mathcal{D}_{sg}(\Gamma')$ is completely described in [9] (see also [24]); in particular, it is not Hom-finite. More precisely, it is equivalent to the category of finitely generated projective modules on a von Neumann regular algebra. The algebra Γ', or rather its Koszul dual, is related to the noncommutative space of Penrose tilings via the work of Smith; see [24, Theorem 7.2 and Example]. We point out that the algebra Γ is non-Gorenstein, since $\mathcal{D}_{sg}(\Gamma)$ is not Hom-finite.

Example 3.4. Let Γ be the k-algebra given by the following quiver Q with relations \{\[x_1^2, x_2^2, x_1x_1, x_2x_1, x_1\alpha_1, x_2\alpha_1, \beta_2\alpha_1, x_1\alpha_2, x_2\alpha_2, \beta_1\alpha_2, \beta_2\alpha_2, \alpha_1\beta_1 - x_1x_2, \alpha_2\beta_2 - x_2x_1\]\}.

We claim that there is a triangle equivalence $\mathcal{D}_{sg}(\Gamma) \simeq \mathcal{D}_{sg}(k(x_1, x_2)/(x_1, x_2)^2)$. Here, $k(x_1, x_2)$ is the free algebra with two variables.

We point out that the triangulated category $\mathcal{D}_{sg}(k(x_1, x_2)/(x_1, x_2)^2)$ is described completely in [9, Example 3.11], where related results are contained in [3, Section 10]. Similar to the example above, this algebra Γ is non-Gorenstein.
To see the claim, we observe that the quiver Q has two loops and two 2-cycles. The proof is done by “removing the 2-cycles”. We have a natural isomorphism $\Gamma = \left(\begin{array}{c} A \\ k \alpha_1 \\ k \end{array} \right)$, where $k = e_1 \Gamma e_1$ and $A = (1 - e_1) \Gamma (1 - e_1)$. We observe that Proposition 3.4 applies with the corresponding $\text{Im } \phi = k \alpha_1 \beta_1$. Set $A / \text{Im } \phi = \Gamma'$. So $D_{\text{sg}}(\Gamma) \simeq D_{\text{sg}}(\Gamma')$. The quiver of Γ' is obtained from Q by removing the vertex 1 and the adjacent arrows, while its relations are obtained from the ones of Γ by replacing $\alpha_1 \beta_1 - x_1 x_2$ with $x_1 x_2$. Similarly, $\Gamma' = \left(\begin{array}{c} A' \\ k \alpha_2 \\ k \end{array} \right)$ with $k = e_2 \Gamma' e_2$ and $A' = e_\alpha \Gamma' e_\alpha$. Then Proposition 3.1 applies again, and we get the equivalence $D_{\text{sg}}(\Gamma') \simeq D_{\text{sg}}(k \langle x_1, x_2 \rangle / \langle x_1, x_2 \rangle^3)$.

This example generalizes directly to a quiver with n loops and n 2-cycles with similar relations. The corresponding statement for the case $n = 1$ is implicitly contained in [14] 2.3 and 4.8.

The last example is a Gorenstein algebra.

Example 3.5. Let $r \geq 2$. Consider the following quiver Q consisting of three 2-cycles and a central 3-cycle Z_3. We identify γ_3 with γ_0 and denote by p_i the path in the central cycle starting at vertex i of length 3.

\[
\begin{array}{c}
1' \\
\alpha_1 \\
\beta_1 \\
1 \\
2' \\
\beta_2 \\
2 \\
\end{array}
\]

\[\begin{array}{c}
\alpha_3 \\
\beta_3 \\
3 \\
\end{array}
\]

Let Γ be the k-algebra given by the quiver Q with relations $\{\beta_i \alpha_i, \gamma_i \alpha_i, \beta_i \gamma_i - 1, \alpha_i \beta_i - p_i^r | i = 1, 2, 3\}$. We point out that in Γ all paths in the central cycle of length strictly larger than $3r + 1$ vanish.

Set $A = kZ_3 / (\gamma_1, \gamma_2, \gamma_3)^{3r}$, where kZ_3 is the path algebra of the central 3-cycle Z_3. The algebra A is self-injective and Nakayama ([11] p.111]). Denote by $A\text{-mod}$ the stable category of A-modules; it is naturally a triangulated category (see [13] Theorem 1.2.6).

We claim that there is a triangle equivalence $D_{\text{sg}}(\Gamma) \simeq A\text{-mod}$.

For the claim, we observe an isomorphism $A = \Gamma / (\Gamma e_1 + e_2 + e_3) \Gamma$. We argue as in Example 3.4 by removing the three 2-cycles and applying Proposition 3.1 repeatedly. Then we get a triangle equivalence $D_{\text{sg}}(\Gamma) \simeq D_{\text{sg}}(A)$. Finally, by [23] Theorem 2.1 we have a triangle equivalence $D_{\text{sg}}(A) \simeq A\text{-mod}$. Then we are done.

We point out that the algebra Γ is Gorenstein with self-injective dimension two. Hence by [6] Theorem 4.4.1 and [14] Theorem 4.6 there is a triangle equivalence $D_{\text{sg}}(\Gamma) \simeq \text{MCM}(\Gamma)$, where $\text{MCM}(\Gamma)$ denotes the stable category of (maximal) Cohen-Macaulay Γ-modules. Then we have a triangle equivalence

$\text{MCM}(\Gamma) \simeq A\text{-mod}$.

We mention that Γ is a special biserial algebra of finite representation type (by [10] Lemma II.8.1]). It would be interesting to identify (maximal) Cohen-Macaulay Γ-modules in the Auslander-Reiten quiver of Γ.

This example generalizes directly to a quiver with n 2-cycles and a central n-cycle with similar relations. The case where $n = 1$ and $r = 2$ coincides with the examples considered in [14] 2.3 and 4.8.

Acknowledgements

The author thanks the referee for useful comments and Huanhuan Li for helpful discussions. The results of this paper partially answer a question that was raised by Professor Changchang Xi during a conference held in Jinan in June 2011.

References

WU WEN-TSUN KEY LABORATORY OF MATHEMATICS, UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA, CHINESE ACADEMY OF SCIENCES, HEFEI 230026, ANHUI, PEOPLE’S REPUBLIC OF CHINA

E-mail address: xwchen@mail.ustc.edu.cn

URL: http://home.ustc.edu.cn/~xwchen