A remark on central sequence algebras of the tensor product of $\mathrm {II}_{1}$ factors
HTML articles powered by AMS MathViewer
- by Wenming Wu and Wei Yuan
- Proc. Amer. Math. Soc. 142 (2014), 2829-2835
- DOI: https://doi.org/10.1090/S0002-9939-2014-12046-6
- Published electronically: May 12, 2014
- PDF | Request permission
Abstract:
Let $\mathcal {M}$ and $\mathcal {N}$ be two type $\mathrm {II}_{1}$ factors with separable predual and $\omega$ a free ultrafilter on $\mathbb {N}$. If the central sequence algebra $\mathcal {N}_{\omega }$ is abelian and there is a non-atomic abelian subalgebra $\mathcal {A}$ in $\mathcal {M}$ such that any central sequence of $\mathcal {M}\overline {\otimes }\mathcal {N}$ is contained in the ultrapower $(\mathcal {A}\overline {\otimes }\mathcal {N})^{\omega }$, then $(\mathcal {M}\overline {\otimes }\mathcal {N})_{\omega }$ is abelian. It is also shown that there is an action $\alpha$ of the free group $F_2$ on the group von Neumann algebra $\mathcal {L}_{\mathbb {Z}}$ such that the central sequence algebra of $\mathcal {M}=\mathcal {L}_{\mathbb {Z}}\rtimes _{\alpha } F_2$ is abelian and non-trivial and any central sequence in $\mathcal {M}\overline {\otimes }\mathcal {N}$ is in the ultrapower $(\mathcal {L}_{\mathbb {Z}}\overline {\otimes }\mathcal {N})^{\omega }$.References
- A. Connes, Classification of injective factors. Cases $II_{1},$ $II_{\infty },$ $III_{\lambda },$ $\lambda \not =1$, Ann. of Math. (2) 104 (1976), no. 1, 73–115. MR 454659, DOI 10.2307/1971057
- J. Dixmier, Quelques propriétés des suites centrales dans les facteurs de type $\textrm {II}_{1}$, Invent. Math. 7 (1969), 215–225 (French). MR 248534, DOI 10.1007/BF01404306
- Junsheng Fang, Liming Ge, and Weihua Li, Central sequence algebras of von Neumann algebras, Taiwanese J. Math. 10 (2006), no. 1, 187–200. MR 2186173, DOI 10.11650/twjm/1500403810
- Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. II, Pure and Applied Mathematics, vol. 100, Academic Press, Inc., Orlando, FL, 1986. Advanced theory. MR 859186, DOI 10.1016/S0079-8169(08)60611-X
- Dusa McDuff, Central sequences and the hyperfinite factor, Proc. London Math. Soc. (3) 21 (1970), 443–461. MR 281018, DOI 10.1112/plms/s3-21.3.443
- Narutaka Ozawa, Solid von Neumann algebras, Acta Math. 192 (2004), no. 1, 111–117. MR 2079600, DOI 10.1007/BF02441087
- Narutaka Ozawa, A Kurosh-type theorem for type $\rm II_1$ factors, Int. Math. Res. Not. , posted on (2006), Art. ID 97560, 21. MR 2211141, DOI 10.1155/IMRN/2006/97560
- Sorin Popa, Orthogonal pairs of $\ast$-subalgebras in finite von Neumann algebras, J. Operator Theory 9 (1983), no. 2, 253–268. MR 703810
- S. Sakai, The theory of W*-algebras, Lecture notes, Yale University, 1962.
- M. Takesaki, Theory of operator algebras. I, Encyclopaedia of Mathematical Sciences, vol. 124, Springer-Verlag, Berlin, 2002. Reprint of the first (1979) edition; Operator Algebras and Non-commutative Geometry, 5. MR 1873025
- Elias M. Stein and Rami Shakarchi, Real analysis, Princeton Lectures in Analysis, vol. 3, Princeton University Press, Princeton, NJ, 2005. Measure theory, integration, and Hilbert spaces. MR 2129625, DOI 10.1515/9781400835560
Bibliographic Information
- Wenming Wu
- Affiliation: College of Mathematical Sciences, Chongqing Normal University, Chongqing, 400047, People’s Republic of China
- Email: wuwm@amss.ac.cn
- Wei Yuan
- Affiliation: Academy of Mathematics and Systems Science, Chinese Academy of Science, Beijing, 100084, People’s Republic of China
- Email: wyuan@math.ac.cn
- Received by editor(s): November 18, 2011
- Received by editor(s) in revised form: September 10, 2012
- Published electronically: May 12, 2014
- Additional Notes: This work was partially supported by NSFC (No.11271390, No. 11301511) and Natural Science Foundation Project of CQ CSTC (No. CSTC, 2010BB9318).
- Communicated by: Marius Junge
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 142 (2014), 2829-2835
- MSC (2010): Primary 46L10
- DOI: https://doi.org/10.1090/S0002-9939-2014-12046-6
- MathSciNet review: 3209336