A boundary Harnack inequality for singular equations of $p$-parabolic type
HTML articles powered by AMS MathViewer
- by Tuomo Kuusi, Giuseppe Mingione and Kaj Nyström
- Proc. Amer. Math. Soc. 142 (2014), 2705-2719
- DOI: https://doi.org/10.1090/S0002-9939-2014-12171-X
- Published electronically: April 29, 2014
- PDF | Request permission
Abstract:
We prove a boundary Harnack type inequality for nonnegative solutions to singular equations of $p$-parabolic type, $2n/(n+1)<p<2$, in a time-independent cylinder whose base is $C^{1,1}$-regular. Simple examples show, using the corresponding estimates valid for the heat equation as a point of reference, that this type of inequality cannot, in general, be expected to hold in the degenerate case ($2<p<\infty$).References
- Emilio Acerbi and Giuseppe Mingione, Gradient estimates for a class of parabolic systems, Duke Math. J. 136 (2007), no. 2, 285–320. MR 2286632, DOI 10.1215/S0012-7094-07-13623-8
- Hiroaki Aikawa, Tero Kilpeläinen, Nageswari Shanmugalingam, and Xiao Zhong, Boundary Harnack principle for $p$-harmonic functions in smooth Euclidean domains, Potential Anal. 26 (2007), no. 3, 281–301. MR 2286038, DOI 10.1007/s11118-006-9036-y
- B. Avelin, U. Gianazza and S. Salsa, Boundary estimates for certain degenerate and singular parabolic equations, Preprint (2012).
- Emmanuele DiBenedetto, Degenerate parabolic equations, Universitext, Springer-Verlag, New York, 1993. MR 1230384, DOI 10.1007/978-1-4612-0895-2
- Emmanuele DiBenedetto and Avner Friedman, Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math. 357 (1985), 1–22. MR 783531, DOI 10.1515/crll.1985.357.1
- Emmanuele DiBenedetto, Ugo Gianazza, and Vincenzo Vespri, Harnack estimates for quasi-linear degenerate parabolic differential equations, Acta Math. 200 (2008), no. 2, 181–209. MR 2413134, DOI 10.1007/s11511-008-0026-3
- Emmanuele DiBenedetto, Ugo Gianazza, and Vincenzo Vespri, Forward, backward and elliptic Harnack inequalities for non-negative solutions to certain singular parabolic partial differential equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 (2010), no. 2, 385–422. MR 2731161
- Eugene B. Fabes, Nicola Garofalo, and Sandro Salsa, A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations, Illinois J. Math. 30 (1986), no. 4, 536–565. MR 857210
- E. B. Fabes and M. V. Safonov, Behavior near the boundary of positive solutions of second order parabolic equations, Proceedings of the conference dedicated to Professor Miguel de Guzmán (El Escorial, 1996), 1997, pp. 871–882. MR 1600211, DOI 10.1007/BF02656492
- E. B. Fabes, M. V. Safonov, and Yu Yuan, Behavior near the boundary of positive solutions of second order parabolic equations. II, Trans. Amer. Math. Soc. 351 (1999), no. 12, 4947–4961. MR 1665328, DOI 10.1090/S0002-9947-99-02487-3
- Nicola Garofalo, Second order parabolic equations in nonvariational forms: boundary Harnack principle and comparison theorems for nonnegative solutions, Ann. Mat. Pura Appl. (4) 138 (1984), 267–296. MR 779547, DOI 10.1007/BF01762548
- David S. Jerison and Carlos E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. in Math. 46 (1982), no. 1, 80–147. MR 676988, DOI 10.1016/0001-8708(82)90055-X
- T. Kilpeläinen and P. Lindqvist, On the Dirichlet boundary value problem for a degenerate parabolic equation, SIAM J. Math. Anal. 27 (1996), no. 3, 661–683. MR 1382827, DOI 10.1137/0527036
- Juha Kinnunen and John L. Lewis, Higher integrability for parabolic systems of $p$-Laplacian type, Duke Math. J. 102 (2000), no. 2, 253–271. MR 1749438, DOI 10.1215/S0012-7094-00-10223-2
- Tuomo Kuusi and Giuseppe Mingione, Potential estimates and gradient boundedness for nonlinear parabolic systems, Rev. Mat. Iberoam. 28 (2012), no. 2, 535–576. MR 2916967
- T. Kuusi and G. Mingione, Gradient regularity for nonlinear parabolic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (V) 12 (2013), 755–822.
- Tuomo Kuusi, Giuseppe Mingione, and Kaj Nyström, Sharp regularity for evolutionary obstacle problems, interpolative geometries and removable sets, J. Math. Pures Appl. (9) 101 (2014), no. 2, 119–151 (English, with English and French summaries). MR 3158698, DOI 10.1016/j.matpur.2013.03.004
- John L. Lewis and Kaj Nyström, Boundary behaviour for $p$ harmonic functions in Lipschitz and starlike Lipschitz ring domains, Ann. Sci. École Norm. Sup. (4) 40 (2007), no. 5, 765–813 (English, with English and French summaries). MR 2382861, DOI 10.1016/j.ansens.2007.09.001
- John Lewis and Kaj Nyström, Boundary behavior and the Martin boundary problem for $p$ harmonic functions in Lipschitz domains, Ann. of Math. (2) 172 (2010), no. 3, 1907–1948. MR 2726103, DOI 10.4007/annals.2010.172.1907
- John L. Lewis and Kaj Nyström, Regularity and free boundary regularity for the $p$ Laplacian in Lipschitz and $C^1$ domains, Ann. Acad. Sci. Fenn. Math. 33 (2008), no. 2, 523–548. MR 2431379
- John L. Lewis and Kaj Nyström, Boundary behaviour of $p$-harmonic functions in domains beyond Lipschitz domains, Adv. Calc. Var. 1 (2008), no. 2, 133–170. MR 2427450, DOI 10.1515/ACV.2008.005
- John L. Lewis and Kaj Nyström, Regularity of Lipschitz free boundaries in two-phase problems for the $p$-Laplace operator, Adv. Math. 225 (2010), no. 5, 2565–2597. MR 2680176, DOI 10.1016/j.aim.2010.05.005
- John L. Lewis and Kaj Nyström, Regularity of flat free boundaries in two-phase problems for the $p$-Laplace operator, Ann. Inst. H. Poincaré C Anal. Non Linéaire 29 (2012), no. 1, 83–108. MR 2876248, DOI 10.1016/j.anihpc.2011.09.002
- John L. Lewis and Kaj Nyström, Regularity and free boundary regularity for the $p$-Laplace operator in Reifenberg flat and Ahlfors regular domains, J. Amer. Math. Soc. 25 (2012), no. 3, 827–862. MR 2904575, DOI 10.1090/S0894-0347-2011-00726-1
- Gary M. Lieberman, Boundary and initial regularity for solutions of degenerate parabolic equations, Nonlinear Anal. 20 (1993), no. 5, 551–569. MR 1207530, DOI 10.1016/0362-546X(93)90038-T
- Kaj Nyström, The Dirichlet problem for second order parabolic operators, Indiana Univ. Math. J. 46 (1997), no. 1, 183–245. MR 1462802, DOI 10.1512/iumj.1997.46.1277
- Sandro Salsa, Some properties of nonnegative solutions of parabolic differential operators, Ann. Mat. Pura Appl. (4) 128 (1981), 193–206 (English, with Italian summary). MR 640782, DOI 10.1007/BF01789473
- Mikhail V. Safonov and Yu Yuan, Doubling properties for second order parabolic equations, Ann. of Math. (2) 150 (1999), no. 1, 313–327. MR 1715327, DOI 10.2307/121104
- Giuseppe Savaré and Vincenzo Vespri, The asymptotic profile of solutions of a class of doubly nonlinear equations, Nonlinear Anal. 22 (1994), no. 12, 1553–1565. MR 1285092, DOI 10.1016/0362-546X(94)90188-0
Bibliographic Information
- Tuomo Kuusi
- Affiliation: Aalto University, Institute of Mathematics, P.O. Box 11100, FI-00076 Aalto, Finland
- Email: tuomo.kuusi@aalto.fi
- Giuseppe Mingione
- Affiliation: Dipartimento di Matematica e Informatica, Università di Parma, Parco Area delle Scienze 53/a, Campus, 43124 Parma, Italy
- Email: giuseppe.mingione@unipr.it
- Kaj Nyström
- Affiliation: Department of Mathematics, Uppsala University, S-751 06 Uppsala, Sweden
- Email: kaj.nystrom@math.uu.se
- Received by editor(s): August 29, 2012
- Published electronically: April 29, 2014
- Communicated by: Tatiana Toro
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 142 (2014), 2705-2719
- MSC (2010): Primary 35K10, 35K67, 35K92, 35B65
- DOI: https://doi.org/10.1090/S0002-9939-2014-12171-X
- MathSciNet review: 3209326