Some positivities in certain triangular arrays
HTML articles powered by AMS MathViewer
- by Bao-Xuan Zhu
- Proc. Amer. Math. Soc. 142 (2014), 2943-2952
- DOI: https://doi.org/10.1090/S0002-9939-2014-12008-9
- Published electronically: April 11, 2014
- PDF | Request permission
Abstract:
Let $\{T_{n,k}\}_{n,k\ge 0}$ be an array of nonnegative numbers satisfying the recurrence relation \begin{equation*} T_{n,k}=(a_1k^2+a_2k+a_3)T_{n-1,k}+(b_1k^2+b_2k+b_3)T_{n-1,k-1} \end{equation*} with $T_{n,k}=0$ unless $0\le k\le n$. We obtain some results for the total positivity of the matrix $\left (T_{n,k}\right )_{n,k\ge 0}$, Pólya frequency properties of the row and column generating functions, and $q$-log-convexity of the row generating functions. This allows a unified treatment of the properties above for some triangular arrays of the second kind, including the Stirling triangle, Jacobi-Stirling triangle, Legendre-Stirling triangle, and central factorial numbers triangle.References
- George E. Andrews, Eric S. Egge, Wolfgang Gawronski, and Lance L. Littlejohn, The Jacobi-Stirling numbers, J. Combin. Theory Ser. A 120 (2013), no. 1, 288–303. MR 2971713, DOI 10.1016/j.jcta.2012.08.006
- G. E. Andrews, W. Gawronski, and L. L. Littlejohn, The Legendre-Stirling numbers, Discrete Math. 311 (2011), no. 14, 1255–1272. MR 2795536, DOI 10.1016/j.disc.2011.02.028
- George E. Andrews and Lance L. Littlejohn, A combinatorial interpretation of the Legendre-Stirling numbers, Proc. Amer. Math. Soc. 137 (2009), no. 8, 2581–2590. MR 2497469, DOI 10.1090/S0002-9939-09-09814-1
- Petter Brändén, On linear transformations preserving the Pólya frequency property, Trans. Amer. Math. Soc. 358 (2006), no. 8, 3697–3716. MR 2218995, DOI 10.1090/S0002-9947-06-03856-6
- Francesco Brenti, Unimodal, log-concave and Pólya frequency sequences in combinatorics, Mem. Amer. Math. Soc. 81 (1989), no. 413, viii+106. MR 963833, DOI 10.1090/memo/0413
- Francesco Brenti, Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update, Jerusalem combinatorics ’93, Contemp. Math., vol. 178, Amer. Math. Soc., Providence, RI, 1994, pp. 71–89. MR 1310575, DOI 10.1090/conm/178/01893
- Francesco Brenti, Combinatorics and total positivity, J. Combin. Theory Ser. A 71 (1995), no. 2, 175–218. MR 1342446, DOI 10.1016/0097-3165(95)90000-4
- Lynne M. Butler, The $q$-log-concavity of $q$-binomial coefficients, J. Combin. Theory Ser. A 54 (1990), no. 1, 54–63. MR 1051778, DOI 10.1016/0097-3165(90)90005-H
- William Y. C. Chen, Robert L. Tang, Larry X. W. Wang, and Arthur L. B. Yang, The $q$-log-convexity of the Narayana polynomials of type B, Adv. in Appl. Math. 44 (2010), no. 2, 85–110. MR 2576841, DOI 10.1016/j.aam.2009.03.004
- William Y. C. Chen, Larry X. W. Wang, and Arthur L. B. Yang, Schur positivity and the $q$-log-convexity of the Narayana polynomials, J. Algebraic Combin. 32 (2010), no. 3, 303–338. MR 2721054, DOI 10.1007/s10801-010-0216-x
- William Y. C. Chen, Larry X. W. Wang, and Arthur L. B. Yang, Recurrence relations for strongly $q$-log-convex polynomials, Canad. Math. Bull. 54 (2011), no. 2, 217–229. MR 2884236, DOI 10.4153/CMB-2011-008-5
- Eric S. Egge, Legendre-Stirling permutations, European J. Combin. 31 (2010), no. 7, 1735–1750. MR 2673015, DOI 10.1016/j.ejc.2010.03.005
- W. N. Everitt, L. L. Littlejohn, and R. Wellman, Legendre polynomials, Legendre-Stirling numbers, and the left-definite spectral analysis of the Legendre differential expression, J. Comput. Appl. Math. 148 (2002), no. 1, 213–238. On the occasion of the 65th birthday of Professor Michael Eastham. MR 1946196, DOI 10.1016/S0377-0427(02)00582-4
- W. N. Everitt, K. H. Kwon, L. L. Littlejohn, R. Wellman, and G. J. Yoon, Jacobi-Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression, J. Comput. Appl. Math. 208 (2007), no. 1, 29–56. MR 2347735, DOI 10.1016/j.cam.2006.10.045
- Yoann Gelineau and Jiang Zeng, Combinatorial interpretations of the Jacobi-Stirling numbers, Electron. J. Combin. 17 (2010), no. 1, Research Paper 70, 17. MR 2651723, DOI 10.37236/342
- Samuel Karlin, Total positivity. Vol. I, Stanford University Press, Stanford, Calif., 1968. MR 0230102
- Pierre Leroux, Reduced matrices and $q$-log-concavity properties of $q$-Stirling numbers, J. Combin. Theory Ser. A 54 (1990), no. 1, 64–84. MR 1051779, DOI 10.1016/0097-3165(90)90006-I
- Lily L. Liu and Yi Wang, A unified approach to polynomial sequences with only real zeros, Adv. in Appl. Math. 38 (2007), no. 4, 542–560. MR 2311051, DOI 10.1016/j.aam.2006.02.003
- Lily L. Liu and Yi Wang, On the log-convexity of combinatorial sequences, Adv. in Appl. Math. 39 (2007), no. 4, 453–476. MR 2356431, DOI 10.1016/j.aam.2006.11.002
- Pietro Mongelli, Total positivity properties of Jacobi-Stirling numbers, Adv. in Appl. Math. 48 (2012), no. 2, 354–364. MR 2873882, DOI 10.1016/j.aam.2011.06.008
- Pietro Mongelli, Combinatorial interpretations of particular evaluations of complete and elementary symmetric functions, Electron. J. Combin. 19 (2012), no. 1, Paper 60, 23. MR 2916262, DOI 10.37236/2131
- John Riordan, Combinatorial identities, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0231725
- Bruce E. Sagan, Inductive proofs of $q$-log concavity, Discrete Math. 99 (1992), no. 1-3, 289–306. MR 1158792, DOI 10.1016/0012-365X(92)90377-R
- Bruce E. Sagan, Log concave sequences of symmetric functions and analogs of the Jacobi-Trudi determinants, Trans. Amer. Math. Soc. 329 (1992), no. 2, 795–811. MR 1066448, DOI 10.1090/S0002-9947-1992-1066448-X
- Richard P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Graph theory and its applications: East and West (Jinan, 1986) Ann. New York Acad. Sci., vol. 576, New York Acad. Sci., New York, 1989, pp. 500–535. MR 1110850, DOI 10.1111/j.1749-6632.1989.tb16434.x
- Xun-Tuan Su and Yi Wang, On unimodality problems in Pascal’s triangle, Electron. J. Combin. 15 (2008), no. 1, Research Paper 113, 12. MR 2438585, DOI 10.37236/837
- Xun-Tuan Su, Yi Wang, and Yeong-Nan Yeh, Unimodality problems of multinomial coefficients and symmetric functions, Electron. J. Combin. 18 (2011), no. 1, Paper 73, 8. MR 2788690, DOI 10.37236/560
- Xun-Tuan Su and Wei-Wei Zhang, Unimodal rays of the generalized Pascal’s triangle, Ars Combin. 108 (2013), 289–296. MR 3060275
- Yi Wang and Yeong-Nan Yeh, Polynomials with real zeros and Pólya frequency sequences, J. Combin. Theory Ser. A 109 (2005), no. 1, 63–74. MR 2110198, DOI 10.1016/j.jcta.2004.07.008
Bibliographic Information
- Bao-Xuan Zhu
- Affiliation: School of Mathematical Sciences, Jiangsu Normal University, Xuzhou 221116, People’s Republic of China
- MR Author ID: 902213
- Email: bxzhu@jsnu.edu.cn
- Received by editor(s): May 28, 2012
- Received by editor(s) in revised form: August 27, 2012
- Published electronically: April 11, 2014
- Additional Notes: This work was partially supported by the National Natural Science Foundation of China (Nos. 11071030, 11201191), the Natural Science Foundation of Jiangsu Higher Education Institutions (No. 12KJB110005), Key Project of Chinese Ministry of Education (No. 212098), PAPD of Jiangsu Higher Education Institutions and Natural Science Foundation of Jiangsu Normal University (No. 11XLR30)
- Communicated by: Jim Haglund
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 142 (2014), 2943-2952
- MSC (2010): Primary 05A20
- DOI: https://doi.org/10.1090/S0002-9939-2014-12008-9
- MathSciNet review: 3223349