Landen inequalities for special functions
HTML articles powered by AMS MathViewer
- by Árpád Baricz
- Proc. Amer. Math. Soc. 142 (2014), 3059-3066
- DOI: https://doi.org/10.1090/S0002-9939-2014-12016-8
- Published electronically: May 8, 2014
- PDF | Request permission
Abstract:
In this paper our aim is to present some Landen inequalities for Gaussian hypergeometric functions, confluent hypergeometric functions, generalized Bessel functions and general power series. Our main results complement and generalize some known results in the literature.References
- Gert Almkvist and Bruce Berndt, Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, $\pi$, and the Ladies diary, Amer. Math. Monthly 95 (1988), no. 7, 585–608. MR 966232, DOI 10.2307/2323302
- Horst Alzer and Song-Liang Qiu, Monotonicity theorems and inequalities for the complete elliptic integrals, J. Comput. Appl. Math. 172 (2004), no. 2, 289–312. MR 2095322, DOI 10.1016/j.cam.2004.02.009
- G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl. 335 (2007), no. 2, 1294–1308. MR 2346906, DOI 10.1016/j.jmaa.2007.02.016
- George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958, DOI 10.1017/CBO9781107325937
- R. Balasubramanian, S. Ponnusamy, and M. Vuorinen, Functional inequalities for the quotients of hypergeometric functions, J. Math. Anal. Appl. 218 (1998), no. 1, 256–268. MR 1601889, DOI 10.1006/jmaa.1997.5776
- Árpád Baricz, Landen-type inequality for Bessel functions, Comput. Methods Funct. Theory 5 (2005), no. 2, 373–379. MR 2205420, DOI 10.1007/BF03321104
- Árpád Baricz, Bounds for modified Bessel functions of the first and second kinds, Proc. Edinb. Math. Soc. (2) 53 (2010), no. 3, 575–599. MR 2720238, DOI 10.1017/S0013091508001016
- Árpád Baricz, Generalized Bessel functions of the first kind, Lecture Notes in Mathematics, vol. 1994, Springer-Verlag, Berlin, 2010. MR 2656410, DOI 10.1007/978-3-642-12230-9
- Mieczysław Biernacki and Jan Krzyż, On the monotonity of certain functionals in the theory of analytic functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 9 (1955), 135–147 (1957) (English, with Russian and Polish summaries). MR 89903
- Ville Heikkala, Mavina K. Vamanamurthy, and Matti Vuorinen, Generalized elliptic integrals, Comput. Methods Funct. Theory 9 (2009), no. 1, 75–109. MR 2478265, DOI 10.1007/BF03321716
- Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010. With 1 CD-ROM (Windows, Macintosh and UNIX). MR 2723248
- S. Ponnusamy and M. Vuorinen, Asymptotic expansions and inequalities for hypergeometric functions, Mathematika 44 (1997), no. 2, 278–301. MR 1600537, DOI 10.1112/S0025579300012602
- S.-L. Qiu and M. Vuorinen, Landen inequalities for hypergeometric functions, Nagoya Math. J. 154 (1999), 31–56. MR 1689171, DOI 10.1017/S0027763000025290
- Slavko Simić and Matti Vuorinen, Landen inequalities for zero-balanced hypergeometric functions, Abstr. Appl. Anal. , posted on (2012), Art. ID 932061, 11. MR 2898059, DOI 10.1155/2012/932061
Bibliographic Information
- Árpád Baricz
- Affiliation: Department of Economics, Babeş-Bolyai University, Cluj-Napoca 400591, Romania
- MR Author ID: 729952
- Email: bariczocsi@yahoo.com
- Received by editor(s): August 23, 2012
- Received by editor(s) in revised form: September 10, 2012
- Published electronically: May 8, 2014
- Communicated by: Walter Van Assche
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 142 (2014), 3059-3066
- MSC (2010): Primary 39B62, 33C05
- DOI: https://doi.org/10.1090/S0002-9939-2014-12016-8
- MathSciNet review: 3223362