Integral Galois module structure for elementary abelian extensions with a Galois scaffold
HTML articles powered by AMS MathViewer
- by Nigel P. Byott and G. Griffith Elder
- Proc. Amer. Math. Soc. 142 (2014), 3705-3712
- DOI: https://doi.org/10.1090/S0002-9939-2014-12126-5
- Published electronically: July 8, 2014
- PDF | Request permission
Abstract:
This paper justifies an assertion by [Elder, Proc. Amer. Math. Soc., 2009] that Galois scaffolds make the questions of Galois module structure tractable. Let $k$ be a perfect field of characteristic $p$ and let $K=k((T))$. For the class of characteristic $p$ elementary abelian $p$-extensions $L/K$ with Galois scaffolds described in loc. cit., we give a necessary and sufficient condition for the valuation ring $\mathfrak {O}_L$ to be free over its associated order $\mathfrak {A}_{L/K}$ in $K[\mathrm {Gal}(L/K)]$. Interestingly, this condition agrees with the condition found by Y. Miyata concerning a class of cyclic Kummer extensions in characteristic zero.References
- Akira Aiba, Artin-Schreier extensions and Galois module structure, J. Number Theory 102 (2003), no. 1, 118–124. MR 1994476, DOI 10.1016/S0022-314X(03)00083-0
- Françoise Bertrandias, Jean-Paul Bertrandias, and Marie-Josée Ferton, Sur l’anneau des entiers d’une extension cyclique de degré premier d’un corps local, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A1388–A1391 (French). MR 296048
- Françoise Bertrandias and Marie-Josée Ferton, Sur l’anneau des entiers d’une extension cyclique de degré premier d’un corps local, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A1330–A1333 (French). MR 296047
- Nigel P. Byott, On the integral Galois module structure of cyclic extensions of $p$-adic fields, Q. J. Math. 59 (2008), no. 2, 149–162. MR 2428073, DOI 10.1093/qmath/ham037
- Nigel P. Byott and G. Griffith Elder, Galois scaffolds and Galois module structure in extensions of characteristic $p$ local fields of degree $p^2$, J. Number Theory 133 (2013), no. 11, 3598–3610. MR 3084290, DOI 10.1016/j.jnt.2013.04.021
- Bart de Smit and Lara Thomas, Local Galois module structure in positive characteristic and continued fractions, Arch. Math. (Basel) 88 (2007), no. 3, 207–219. MR 2305599, DOI 10.1007/s00013-006-1939-8
- G. Griffith Elder, Galois scaffolding in one-dimensional elementary abelian extensions, Proc. Amer. Math. Soc. 137 (2009), no. 4, 1193–1203. MR 2465640, DOI 10.1090/S0002-9939-08-09710-4
- Bruno Martel, Sur l’anneau des entiers d’une extension biquadratique d’un corps $2$-adique, C. R. Acad. Sci. Paris Sér. A 278 (1974), 117–120 (French). MR 337906
- Yoshimasa Miyata, On the Galois module structure of ideals and rings of all integers of $\mathfrak {p}$-adic number fields, J. Algebra 177 (1995), no. 3, 627–646. MR 1358477, DOI 10.1006/jabr.1995.1320
- Y. Miyata, On the module structure of rings of integers in $\mathfrak {p}$-adic number fields over associated orders, Math. Proc. Cambridge Philos. Soc. 123 (1998), no. 2, 199–212. MR 1490195, DOI 10.1017/S0305004197002016
- Yoshimasa Miyata, Maximal tame extensions over Hopf orders in rings of integers of ${\mathfrak {p}}$-adic number fields, J. Algebra 276 (2004), no. 2, 794–825. MR 2058468, DOI 10.1016/j.jalgebra.2003.10.013
- Paulo Ribenboim, The book of prime number records, 2nd ed., Springer-Verlag, New York, 1989. MR 1016815, DOI 10.1007/978-1-4684-0507-1
Bibliographic Information
- Nigel P. Byott
- Affiliation: College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QE, United Kingdom
- Email: N.P.Byott@ex.ac.uk
- G. Griffith Elder
- Affiliation: Department of Mathematics, University of Nebraska at Omaha, Omaha, Nebraska 68182-0243
- Email: elder@unomaha.edu
- Received by editor(s): April 30, 2009
- Received by editor(s) in revised form: November 23, 2012
- Published electronically: July 8, 2014
- Communicated by: Ted Chinburg
- © Copyright 2014 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 142 (2014), 3705-3712
- MSC (2010): Primary 11S15, 11R33
- DOI: https://doi.org/10.1090/S0002-9939-2014-12126-5
- MathSciNet review: 3251712