Maximal potentials, maximal singular integrals, and the spherical maximal function
HTML articles powered by AMS MathViewer
- by Piotr Hajłasz and Zhuomin Liu
- Proc. Amer. Math. Soc. 142 (2014), 3965-3974
- DOI: https://doi.org/10.1090/S0002-9939-2014-12129-0
- Published electronically: July 31, 2014
- PDF | Request permission
Abstract:
We introduce a notion of maximal potentials and we prove that they form bounded operators from $L^p$ to the homogeneous Sobolev space $\dot {W}^{1,p}$ for all $n/(n-1)<p<n$. We apply this result to the problem of boundedness of the spherical maximal operator in Sobolev spaces.References
- J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Analyse Math. 47 (1986), 69–85. MR 874045, DOI 10.1007/BF02792533
- V. Eiderman, F. Nazarov, and A. Volberg, Vector-valued Riesz potentials: Cartan-type estimates and related capacities, Proc. Lond. Math. Soc. (3) 101 (2010), no. 3, 727–758. MR 2734959, DOI 10.1112/plms/pdq003
- Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
- Loukas Grafakos, Classical Fourier analysis, 2nd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2008. MR 2445437
- Piotr Hajłasz and Zhuomin Liu, Sobolev spaces, Lebesgue points and maximal functions, J. Fixed Point Theory Appl. 13 (2013), no. 1, 259–269. MR 3071953, DOI 10.1007/s11784-013-0111-x
- Piotr Hajłasz and Jani Onninen, On boundedness of maximal functions in Sobolev spaces, Ann. Acad. Sci. Fenn. Math. 29 (2004), no. 1, 167–176. MR 2041705
- Juha Kinnunen, The Hardy-Littlewood maximal function of a Sobolev function, Israel J. Math. 100 (1997), 117–124. MR 1469106, DOI 10.1007/BF02773636
- Juha Kinnunen and Eero Saksman, Regularity of the fractional maximal function, Bull. London Math. Soc. 35 (2003), no. 4, 529–535. MR 1979008, DOI 10.1112/S0024609303002017
- Elias M. Stein, Maximal functions. I. Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2174–2175. MR 420116, DOI 10.1073/pnas.73.7.2174
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Xavier Tolsa, Calderón-Zygmund capacities and Wolff potentials on Cantor sets, J. Geom. Anal. 21 (2011), no. 1, 195–223. MR 2755682, DOI 10.1007/s12220-010-9145-0
- William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685, DOI 10.1007/978-1-4612-1015-3
Bibliographic Information
- Piotr Hajłasz
- Affiliation: Department of Mathematics, 301 Thackeray Hall, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- MR Author ID: 332316
- Email: hajlasz@pitt.edu
- Zhuomin Liu
- Affiliation: Department of Mathematics, 301 Thackeray Hall, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Address at time of publication: Department of Mathematics and Statistics, P. O. Box 35 (MaD), FI-40014 University of Jyväskylä, Finland
- Email: liuzhuomin@hotmail.com
- Received by editor(s): November 3, 2012
- Received by editor(s) in revised form: December 31, 2012
- Published electronically: July 31, 2014
- Additional Notes: The first author was supported by NSF grant DMS-0900871
- Communicated by: Jeremy Tyson
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 142 (2014), 3965-3974
- MSC (2010): Primary 46E35; Secondary 42B20, 42B25
- DOI: https://doi.org/10.1090/S0002-9939-2014-12129-0
- MathSciNet review: 3251736