DIMENSION FREE BOUNDEDNESS OF RIESZ TRANSFORMS FOR THE GRUSHIN OPERATOR

P. K. SANJAY AND S. THANGAVELU

(Communicated by Alexander Iosevich)

Abstract. Let \(G = -\Delta_\xi - |\xi|^2 \frac{\partial^2}{\partial^2 \eta} \) be the Grushin operator on \(\mathbb{R}^n \times \mathbb{R} \). We prove that the Riesz transforms associated to this operator are bounded on \(L^p(\mathbb{R}^{n+1}) \), \(1 < p < \infty \), and their norms are independent of dimension \(n \).

1. Introduction

We consider the Grushin operator \(G = -\Delta_\xi - |\xi|^2 \frac{\partial^2}{\partial^2 \eta} \) on \(\mathbb{R}^n \times \mathbb{R} \) which can be written formally as

\[
G f(\xi, \eta) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-i\lambda \eta} H(\lambda) f^\lambda(\xi) d\lambda,
\]

where

\[
H(\lambda) = -\Delta + \lambda^2 |\xi|^2
\]

is the scaled Hermite operator on \(\mathbb{R}^n \) and

\[
f^\lambda(\xi) = \int_{\mathbb{R}} f(\xi, \eta) e^{i\lambda \eta} d\eta
\]

is the inverse Fourier transform of \(f \) in the \(\eta \) variable. In the light of this decomposition, we can define the Riesz transforms associated to the operator \(G \) as

\[
R_j f(\xi, \eta) = \int_{-\infty}^{\infty} e^{-i\lambda \eta} R_j(\lambda) f^\lambda(\xi) d\lambda
\]

and

\[
R^*_j f(\xi, \eta) = \int_{-\infty}^{\infty} e^{-i\lambda \eta} R^*_j(\lambda) f^\lambda(\xi) d\lambda
\]

for \(j = 1, 2, 3, \ldots, n \). Here,

\[
R_j(\lambda) = A_j(\lambda) H(\lambda)^{-\frac{1}{2}}, \quad R^*_j(\lambda) = A_j(\lambda)^* H(\lambda)^{-\frac{1}{2}}
\]

are the Riesz transforms associated to the Hermite operator which has the decomposition

\[
H(\lambda) = \frac{1}{2} \sum_{j=1}^{n} (A_j(\lambda) A_j(\lambda)^* + A_j(\lambda)^* A_j(\lambda)),
\]

where

\[
A_j(\lambda) = -\frac{\partial}{\partial \xi_j} + \lambda \xi_j, \quad A_j(\lambda)^* = \frac{\partial}{\partial \xi_j} + \lambda \xi_j
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
are the creation and annihilation operators on \mathbb{R}^n. The boundedness of these Riesz transforms on $L^p(\mathbb{R}^{n+1})$ is known \cite{JST,BG}. In \cite{BG}, the authors have proved the boundedness of Riesz transforms associated to a much larger class of smooth locally subelliptic diffusion operators on a smooth connected non-compact manifold. In \cite{JST} these Riesz transforms were treated as operator valued Fourier multipliers for $L^p(\mathbb{R}^n)$ valued functions on \mathbb{R} and the boundedness was proved with the aid of a result of L. Weis \cite{Wei01} on the operator valued Fourier multipliers. The aim of this paper is to prove the following theorem about the dimension free boundedness of the vector of Riesz transforms Rf. That is, we consider the operator $R = (R_1, R_2, \cdots, R_n, R_1^*, R_2^*, \cdots, R_n^*)$ with

$$|Rf(\xi, \eta)| = \left(\sum_{j=1}^{n} |R_j f(\xi, \eta)|^2 + \sum_{j=1}^{n} |R_j^* f(\xi, \eta)|^2\right)^{1/2}$$

and prove:

Theorem 1.1. For each $1 < p < \infty$, there exists a constant C_p independent of dimension n such that for all $f \in L^p(\mathbb{R}^n \times \mathbb{R})$,

$$\|Rf\|_p \leq C_p \|f\|_p.$$
of \cite{ST12} for details. Then the proof of the Hermite Riesz transforms follows by looking at functions of the form $F(\xi, \eta) = f(\xi)e^{i\langle k, n \rangle}$ on $\mathbb{R}^n \times [0, 2\pi)$.

2. Riesz transforms for the Grushin operator

We first consider the individual Riesz transforms R_j and R_j^ϵ for $j = 1, 2, \ldots, n$ and show that they satisfy dimension free bounds on $L^p(\mathbb{R}^{n+1})$ for $1 < p < \infty$. In order to do this we introduce the operators R_j^ϵ and $R_j^{\epsilon*}$, which we will call the truncated Riesz transforms. We only give details of R_j^ϵ, as the other one is similar. Note that the Riesz transform $R_j(\lambda)$ associated to the Hermite operator $H(\lambda)$ can be written as

$$R_j(\lambda) = A_j(\lambda)H(\lambda)^{-1/2} = \frac{A_j(\lambda)}{\sqrt{\pi}} \int_0^\infty e^{-rH(\lambda)r^{-1/2}} dr.$$

Here $e^{-rH(\lambda)}$ is the Hermite semigroup. For $\epsilon > 0$, we define the truncated Riesz transforms $R_j^\epsilon(\lambda)$ by

$$R_j^\epsilon(\lambda) = \frac{A_j(\lambda)}{\sqrt{\pi}} \int_{\epsilon^2}^{1/\epsilon^2} e^{-rH(\lambda)r^{-1/2}} dr.$$

Then the truncated Riesz transforms R_j^ϵ for the Grushin operator are defined as

$$R_j^\epsilon f(\xi, \eta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\lambda\eta} R_j^\epsilon(\lambda) f^{\lambda}(\xi) d\lambda.$$

We first prove

Proposition 2.1. For every $f \in L^2(\mathbb{R}^{n+1})$, $R_j^\epsilon f \to R_j f$ in $L^2(\mathbb{R}^{n+1})$ as $\epsilon \to 0$.

Proof. It follows from the definition that

$$\int_{\mathbb{R}} \int_{\mathbb{R}^n} |R_j^\epsilon f(\xi, \eta) - R_j f(\xi, \eta)|^2 d\xi d\eta = \int_{\mathbb{R}} \left(\int_{\mathbb{R}^n} |R_j^\epsilon(\lambda) f^{\lambda}(\xi) - R_j(\lambda) f^{\lambda}(\xi)|^2 d\xi \right) d\lambda.$$

The proposition follows once we show that for every $\lambda \in \mathbb{R}^*$

$$\int_{\mathbb{R}^n} |R_j^\epsilon(\lambda) f^{\lambda}(\xi) - R_j(\lambda) f^{\lambda}(\xi)|^2 d\xi \to 0 \text{ as } \epsilon \to 0$$

and

$$\int_{\mathbb{R}^n} |R_j^\epsilon(\lambda) f^{\lambda}(\xi) - R_j(\lambda) f^{\lambda}(\xi)|^2 d\xi \leq 4 \int_{\mathbb{R}^n} |f^{\lambda}(\xi)|^2 d\xi.$$

To see these, we expand f^{λ} in terms of scaled Hermite functions Φ^{λ}_{α} (see \cite{Tha04} for a definition) and use the fact that

$$A_j(\lambda)\Phi^{\lambda}_{\alpha} = (2\alpha_j + 2)^{1/2} |\lambda|^{1/2} \Phi^{\lambda}_{\alpha + \epsilon_j},$$

where e_j is the canonical unit vector of \mathbb{R}^n with 1 in the j^{th} entry and zero elsewhere. Then

$$R_j^\epsilon(\lambda) f^{\lambda}(\xi) - R_j(\lambda) f^{\lambda}(\xi)$$

$$= \sum_{\alpha \in \mathbb{N}^n} \frac{(2\alpha_j + 2)^{1/2} |\lambda|^{1/2}}{\sqrt{\pi}} \left(\int_{A_\epsilon} e^{-(2|\alpha|+n)|\lambda|r^{-1/2}} dr \right) (f^{\lambda}, \Phi^{\lambda}_{\alpha}) \Phi^{\lambda}_{\alpha + e_j}(\xi).$$
where $A_ε = (0, ε^2) ∪ (1/ε^2, ∞)$. From this, it follows that

$$
\|R_j^ε(λ) f^λ - R_j(λ) f^λ\|_2^2 \leq \frac{1}{π} \sum_{α∈N^n} \frac{2α_j + 2|λ|}{2|α| + n} |(f^λ, Φ^λ_α)|^2 \left(\int_{A_{ε,α}} e^{-r_1 r^{-1/2} dr} \right)^2,
$$

where $A_{ε,α} = (0, (2|α| + n)|λ|ε^2) ∪ ((2|α| + n)|λ|e^{-2}, ∞)$. From the above equation it is clear that

$$
\|R_j^ε(λ) f^λ - R_j(λ) f^λ\|_2 \leq 2\|f^λ\|_2.
$$

We also note that when

$$
f^λ(ξ) = \sum_{(2|α|+n)|λ|≤N} (f^λ, Φ^λ_α)Φ^λ_α(ξ)
$$
is a finite linear combination of $Φ^λ_α$,

$$
\|R_j^ε(λ) f^λ - R_j(λ) f^λ\|_2 \leq \frac{1}{π} \sum_{(2|α|+n)|λ|≤N} |(f^λ, Φ^λ_α)|^2 \left(\int_{(0,Nε^2)∪(Nε^2,∞)} e^{-r_1 r^{-1/2} dr} \right)^2,
$$

which goes to 0 as $ε → 0$. As such functions are dense in $L^2(ℝ^n)$, we get

$$
\|R_j^ε(λ) f^λ - R_j(λ) f^λ\|_2 → 0, \text{ as } ε → 0,
$$
for any $f ∈ L^2(ℝ^{n+1})$.

For the individual Riesz transforms, we have the following result:

Theorem 2.2. For $j = 1, 2, 3, \cdots, n$ we have

$$
\|R_j f\|_p + \|R_j^2 f\|_p ≤ C_p \|f\|_p, \quad 1 < p < ∞,
$$

for all $f ∈ L^p(ℝ^{n+1})$, where C_p is independent of the dimension.

In order to prove this result, we claim that it is enough to prove

$$
\|R_j^ε f\|_p + \|R_j^ε^2 f\|_p ≤ C_p \|f\|_p
$$

for the truncated Riesz transforms. A proof of this will be given in section 5, where we will show that $(R_j^ε f)$ is Cauchy in $L^p(ℝ^{n+1})$ and hence there exists an operator S_j, bounded on $L^p(ℝ^{n+1})$ such that $R_j^ε f → S_j f$ as $ε → 0$. In view of Proposition 2.1, $R_j^ε f → R_j f$ for $f ∈ L^2(ℝ^{n+1})$, and hence $S_j f = R_j f$. This will prove the stated boundedness of R_j (and $R_j^ε$). Now to prove the boundedness of $R_j^ε$ and $R_j^ε^2$ we express these operators as a superposition of certain truncated Hilbert transforms.

3. A REPRESENTATION FOR THE TRUNCATED RIEZ TRANSFORMS

The representation we obtain is very similar to the representation obtained in [CNZ96] for the Riesz transforms on the Heisenberg group H^n. Before stating this result, we recall some definitions and notation. For further details and proofs we refer to [Tha04].

Recall that as a manifold $H^n = ℂ^n × ℝ$, and hence we write $(z, t), z = x + iy ∈ ℂ^n, t ∈ ℝ,$ to denote the elements of H^n. The sub-Laplacian L on the Heisenberg group H^n can be written in terms of the differential operators $X_j = \left(\frac{∂}{∂x_j} + \frac{1}{2} y_j \frac{∂}{∂t} \right)$
and $Y_j = \left(\frac{\partial}{\partial y_j} - \frac{1}{2} x_j \frac{\partial}{\partial r}\right)$ as $\mathcal{L} = \sum_{j=1}^{n}(X_j^2 + Y_j^2)$. The sub-Laplacian is homogeneous of degree 2 with respect to the non-isotropic dilations $\delta_r(z, t) = (rz, r^2t)$ of the Heisenberg group. Hence $p_s(z, t)$, the heat kernel associated to \mathcal{L}, satisfies

$$p_{r^2s}(z, t) = r^{-(2n+2)}p_s(z/r, t/r^2).$$

This also follows from the following explicit expression for $q_s(z, \lambda)$, the inverse Fourier transform of $p_s(z, t)$ in the t variable:

$$q_s(z, \lambda) = \int_{\mathbb{R}} p_s(z, t) e^{i\lambda t} dt = (4\pi)^{-n} \left(\frac{\lambda}{\sinh \lambda s}\right)^n e^{-\frac{1}{4} \lambda \coth(s\lambda)|z|^2}.$$

By π_λ, we denote the Schrödinger representation of the Heisenberg group \mathbb{H}^n acting on $L^2(\mathbb{R}^n)$ in the following manner:

$$\pi_\lambda(x + iy, t)\phi(\xi) = e^{i\lambda t} e^{i\lambda(x, \xi + \frac{1}{2}x \cdot y)} \phi(\xi + y).$$

When $t = 0$, we will denote $\pi_\lambda(z, t)$ by $\pi_\lambda(z)$. π_λ also defines a representation of the group algebra $L^1(\mathbb{H}^n)$ as

$$\pi_\lambda(f) = \int_{\mathbb{H}^n} f(z, t) \pi_\lambda(z, t) dz dt = W_\lambda(f^\lambda),$$

where $W_\lambda(g) = \int_{\mathbb{C}^n} g(z) \pi_\lambda(z) dz$ is the Weyl transform of g. The representation given in [CMZ96] for the Riesz transforms associated to the sub-Laplacian \mathcal{L} is

$$(X_i\mathcal{L}^{-\frac{1}{2}} f)(z, t) = -\frac{1}{4(2\pi)^{n+1}} \int_{\mathbb{H}^n} X_i p_1(w, s) H_{(w, s)} f(z, t) dw ds,$$

where $H_{(w, s)}$ is the Hilbert transform along a curve in the Heisenberg group. For the Grushin operator, we obtain a similar representation involving certain operators $T_\epsilon^{(z, t)}$ and certain differential operators $\tilde{Z}_j = i\tilde{X}_j + \tilde{Y}_j$; $\tilde{Z}_j^* = i\tilde{X}_j - \tilde{Y}_j$

with

$$\tilde{X}_j = \left(\frac{\partial}{\partial x_j} - \frac{y_j}{2} \frac{\partial}{\partial t}\right); \tilde{Y}_j = \left(\frac{\partial}{\partial y_j} + \frac{x_j}{2} \frac{\partial}{\partial t}\right).$$

Proposition 3.1.

$$R_j f(\xi, \eta) = \frac{1}{\sqrt{\pi}} \int_{\mathbb{H}^n} T_\epsilon^{(z, t)} f(\xi, \eta) \tilde{Z}_j p_1(z, t) dz dt$$

and

$$R_j^{*\epsilon} f(\xi, \eta) = \frac{1}{\sqrt{\pi}} \int_{\mathbb{H}^n} T_\epsilon^{(z, t)} f(\xi, \eta) \tilde{Z}_j^* p_1(z, t) dz dt,$$

where

$$T_\epsilon^{(z, t)} f(\xi, \eta) = \int_{|r| < \epsilon} f(\xi + ry, \eta + rx \cdot \xi + r^2 \left(t + \frac{x \cdot y}{2}\right)) \frac{dr}{r}.$$

We follow the method in [LP06] for proving this proposition. First we prove the following lemma, which will be used in the proof of Proposition 3.1.

Lemma 3.2. For any $\phi \in S(\mathbb{R}^n)$,

(i) $r \frac{\partial}{\partial x_j} (\pi_\lambda(rz) \phi(\xi)) = \left(\frac{\partial}{\partial y_j} + \frac{i\lambda r^2 x_j}{2}\right) (\pi_\lambda(rz) \phi(\xi)),$

(ii) $ir \lambda \xi_j \pi_\lambda(rz) \phi(\xi) = \left(\frac{\partial}{\partial x_j} - \frac{i\lambda r^2 y_j}{2}\right) \pi_\lambda(rz) \phi(\xi).$
Proof. We first look at the derivative of $\pi_\lambda(rz)$ with respect to the variable y_j and see that
\[
\frac{\partial}{\partial y_j} \left(\pi_\lambda(rz) \phi(\xi) \right) = \frac{\partial}{\partial y_j} \left(e^{i\lambda(rx+\frac{1}{2}rz^2y)} \phi(\xi + ry) \right) = \frac{i\lambda r^2 x_j}{2} \pi_\lambda(rz) \phi(\xi) + e^{i\lambda(rx+\frac{1}{2}rz^2y)} \frac{\partial}{\partial y_j} \phi(\xi + ry).
\]
Writing
\[
\pi_\lambda(rz) \frac{\partial}{\partial \xi_j} (\phi(\xi)) = \left(\pi_\lambda(rz) \frac{\partial}{\partial \xi_j} - \frac{\partial}{\partial \xi_j} \pi_\lambda(rz) \right) \phi(\xi) + \frac{\partial}{\partial \xi_j} \pi_\lambda(rz) \phi(\xi)
\]
and noting that
\[
\frac{\partial}{\partial \xi_j} \left(\pi_\lambda(rz) \phi(\xi) \right) = i\lambda r x_j \pi_\lambda(rz) \phi(\xi) + \pi_\lambda(rz) \frac{\partial}{\partial \xi_j} \phi(\xi),
\]
we see that
\[
\frac{\partial}{\partial y_j} \left(\pi_\lambda(rz) \phi(\xi) \right) = \left(r \frac{\partial}{\partial \xi_j} - \frac{i\lambda r^2 x_j}{2} \right) \left(\pi_\lambda(rz) \phi(\xi) \right),
\]
which proves part (i). Part (ii) of the lemma follows from
\[
\frac{\partial}{\partial x_j} \left(\pi_\lambda(rz) \phi(\xi) \right) = i\lambda r \xi_j \pi_\lambda(rz) \phi(\xi) + \frac{i\lambda r^2 y_j}{2} \pi_\lambda(rz) \phi(\xi).
\]
\[\square\]

Proof of Proposition 3.1. The heat kernels for the sub-Laplacian and the Hermite operators are related via the group Fourier transform on the Heisenberg group as follows:
\[
p_\lambda(z) = \int_{\mathbb{H}_n} p_\lambda(z, t) \pi_\lambda(z, t) \, dz \, dt = e^{-sH(\lambda)}.
\]
We refer to [Tha04] for a proof of this. Using the homogeneity of the heat kernel we get
\[
e^{-r^2H(\lambda)} = r^{-(2n+2)} \int_{\mathbb{H}_n} \pi_\lambda(z, t) p_1 \left(\frac{z}{r}, \frac{t}{r^2} \right) \, dz \, dt = r^{-2n} \int_{\mathbb{C}_n} \pi_\lambda(z) q_1 \left(\frac{z}{r}, -\lambda r^2 \right) \, dz = \int_{\mathbb{C}_n} \pi_\lambda(rz) q_1 \left(z, -\lambda r^2 \right) \, dz.
\]
Since $R_\lambda^f(\lambda) = \frac{1}{\sqrt{\pi}} A_j(\lambda) \int_{|z| < 1/\epsilon} e^{-r^2H(\lambda)} \, dr$, we see that
\[
R_\lambda^f(\lambda) = \frac{1}{\sqrt{\pi}} \int_{|z| < 1/\epsilon} \int_{\mathbb{C}_n} \left(-\frac{\partial}{\partial \xi_j} + \lambda \xi_j \right) \pi_\lambda(rz) q_1 \left(z, -\lambda r^2 \right) \, dz \, dr,
\]
\[
R_\lambda^{*f}(\lambda) = \frac{1}{\sqrt{\pi}} \int_{|z| < 1/\epsilon} \int_{\mathbb{C}_n} \left(\frac{\partial}{\partial \xi_j} + \lambda \xi_j \right) \pi_\lambda(rz) q_1 \left(z, -\lambda r^2 \right) \, dz \, dr.
\]
Now using the previous lemma,
\[
ir \int_{\mathbb{C}^n} \lambda \xi_j \pi_\lambda(rz) q_1 \left(\frac{z}{r}, -\lambda r^2 \right) dz
\]
\[
= \int_{\mathbb{C}^n} \left(\frac{\partial}{\partial x_j} - \frac{i \lambda r^2 y_j}{2} \right) \pi_\lambda(rz) q_1(z, -\lambda r^2) dz
\]
\[
= - \int_{\mathbb{C}^n} \pi_\lambda(rz) \left(\frac{\partial}{\partial x_j} + \frac{i \lambda r^2 y_j}{2} \right) \left(\int_{\mathbb{R}} p_1(z, t) e^{i \lambda r^2 t} dt \right) dz
\]
\[
= - \int_{\mathbb{C}^n} \pi_\lambda(rz) \left(\int_{\mathbb{R}} \left(\frac{\partial}{\partial x_j} - \frac{y_j}{2} \frac{\partial}{\partial t} \right) p_1(z, t) e^{i \lambda r^2 t} dt \right) dz
\]
\[
= - \int_{\mathbb{H}^n} \pi_\lambda(rz) \hat{X}_j p_1(z, t) e^{i \lambda r^2 t} dz dt.
\]

Similarly,
\[
r \int_{\mathbb{C}^n} \left(\frac{\partial}{\partial \xi_j} \pi_\lambda(rz) \right) q_1 \left(\frac{z}{r}, -\lambda r^2 \right) dz
\]
\[
= \int_{\mathbb{C}^n} \left(\frac{\partial}{\partial y_j} + \frac{i \lambda r^2 x_j}{2} \right) \pi_\lambda(rz) q_1(z, -\lambda r^2) dz
\]
\[
= - \int_{\mathbb{H}^n} \pi_\lambda(rz) \hat{Y}_j p_1(z, t) e^{i \lambda r^2 t} dz dt.
\]

Hence
\[
R_j^e(\lambda) = \frac{1}{\sqrt{\pi}} \int_{|r|<1/\varepsilon} \int_{\mathbb{H}^n} \pi_\lambda(rz) \hat{Z}_j p_1(z, t) e^{i \lambda r^2 t} dz dt \frac{dr}{r}
\]
and
\[
R_j^{e*}(\lambda) = \frac{1}{\sqrt{\pi}} \int_{|r|<1/\varepsilon} \int_{\mathbb{H}^n} \pi_\lambda(rz) \hat{Z}_j^* p_1(z, t) e^{i \lambda r^2 t} dz dt \frac{dr}{r}.
\]

Thus
\[
R_j^e f(\xi, \eta) = \frac{1}{\sqrt{\pi}} \int_{\mathbb{R}} \left(\int_{|r|<1/\varepsilon} \int_{\mathbb{H}^n} \pi_\lambda(rz) f^\lambda(\xi) \hat{Z}_j p_1(z, t) e^{i \lambda r^2 t} dz dt \frac{dr}{r} \right) e^{i \lambda \eta} d\lambda.
\]

Now the proposition follows from the fact that
\[
\int_{\mathbb{R}} \pi_\lambda(rz) f^\lambda(\xi) e^{i \lambda r^2} e^{i \lambda \eta} d\lambda = f \left(\xi + ry, \eta + rx \cdot \xi + r^2 \left(t + \frac{x \cdot y}{2} \right) \right).
\]

\[\square \]

4. A TRANSFERENCE RESULT

In the previous section we obtained a representation for the Riesz transforms as the superposition of certain operators $T_{(z,t)}^\varepsilon$. To prove the boundedness of the vector of Riesz transforms, using the method of rotations, we need to prove that these operators are bounded uniformly in (z, t).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proposition 4.1. For $1 < p < \infty$, there exists a constant C_p independent of $(z,t) \in \mathbb{H}^n$, $\epsilon > 0$ and the dimension n such that

$$\left\| T_\epsilon^{(z,t)} f \right\|_{L^p(\mathbb{R}^{n+1})} \leq C_p \left\| f \right\|_{L^p(\mathbb{R}^{n+1})}.$$

Proof. This will be proved using Calderón’s method of transferring an operator on $L^p(X)$, for a measure space X, to $L^p(G)$ when the group G acts on X by measure preserving transformations. The measure space \mathbb{R}^{n+1}, the group \mathbb{H}^n and the group action

$$U(x + iy, t)(\xi, \eta) = (\xi - y, \eta - t + \frac{x \cdot y}{2} - x, \xi)$$

are all the same as those used by Ratnakumar and Thangavelu in [RT98], and we follow their notation. Accordingly, for $f \in L^p(\mathbb{R}^{n+1})$ and $(\xi, \eta) \in \mathbb{R}^{n+1}$, we define the transferred function $F_{(\xi, \eta)}$ on \mathbb{H}^n as

$$F_{(\xi, \eta)}(z, t) = f(U(z, t)(\xi, \eta)).$$

For $T \in \mathcal{B}(L^p(\mathbb{H}^n))$, the transferred operator T_0 on $\mathcal{B}(L^p(\mathbb{R}^{n+1}))$ is defined as

$$T_0 f(\xi, \eta) = (TF_{(\xi, \eta)})(0).$$

For a curve $\gamma = \{ \gamma(t) \in \mathbb{H}^n, t \in \mathbb{R} \}$ and a function f on \mathbb{H}^n, the Hilbert transform of f along γ is defined as

$$H_{\gamma} f(w, s) = \int_{\mathbb{R}} f((w, s) \gamma(r)^{-1}) \frac{dr}{r}.$$

When γ is the curve $(rz, r^2 t)$, we will denote H_{γ} by $H_{(z, t)}$. By $H_{(z, t)}^\epsilon$, we denote the truncated Hilbert transform where the integration is only over $\{ r \in \mathbb{R}, \epsilon < |r| < 1/\epsilon \}$. When we transfer this operator $H_{(z, t)}^\epsilon$ to an operator on $L^p(\mathbb{R}^{n+1})$ under the U action defined above, we get

$$H_{(z, t)}^\epsilon \gamma f(\xi, \eta) = \int_{\epsilon < |r| < 1/\epsilon} F_{(\xi, \eta)}(-rz, -r^2 t) \frac{dr}{r}$$

$$= \int_{\epsilon < |r| < 1/\epsilon} f \left(\xi + ry, \eta + r(x \cdot \xi) + r^2 \left(t + \frac{x \cdot y}{2} \right) \right) \frac{dr}{r}.$$

Hence we see that $(H_{(z, t)}^\epsilon \gamma) f = T_\epsilon^{(z, t)}$. Now our aim is to prove

$$\left\| T_\epsilon^{(z,t)} f \right\|_{L^p(\mathbb{R}^{n+1})} \leq C_p \left\| f \right\|_{L^p(\mathbb{R}^{n+1})}.$$

This can be obtained using the transference method from the uniform boundedness of the operator $H_{(z, t)}^\epsilon$. To be precise, we use the fact that there exist a finite constant C_p, independent of $(z,t) \in \mathbb{H}^n$, n and $\epsilon > 0$ such that

$$\left\| H_{(z, t)}^\epsilon f \right\|_p \leq C_p \left\| f \right\|_p.$$

A proof of the above fact is indicated in [CMZ96]. We will present it at the end of this section after proving the boundedness of $T_\epsilon^{(z,t)}$. Then

$$\int_{\mathbb{R}^{n+1}} |T_\epsilon^{(z,t)} f(\xi, \eta)|^p d\xi d\eta = \int_{\mathbb{R}^{n+1}} |H_{(z, t)}^\epsilon f(\xi, \eta)(0)|^p d\xi d\eta$$

$$= \int_{\mathbb{R}^{n+1}} |H_{(z, t)}^\epsilon F_{U(w, s)(\xi, \eta)(0)}|^p d\xi d\eta.$$
because of the invariance of the measure $d\xi \, d\eta$ under the U action. Hence
\[
\int_{\mathbb{R}^{n+1}} |T_{\epsilon}^\gamma (z,t) f(\xi,\eta)|^p \, d\xi \, d\eta = \frac{1}{|B_R(0)|} \int_{B_R(0)} \int_{\mathbb{R}^{n+1}} |H_{\epsilon}^\gamma (z,t) F_U (w,s)(\xi,\eta)(0)|^p \, d\eta \, dw \, ds
\]
\[
= \frac{1}{|B_R(0)|} \int_{B_R(0)} \int_{\mathbb{R}^{n+1}} |H_{\epsilon}^\gamma (z,t) F_{\xi,\eta} (w,s)|^p \, d\eta \, dw \, ds,
\]
where $B_R(0)$ is the ball centred at the origin in the Heisenberg group and radius R under the Koranyi norm $\|(w,s)\| = (|w| + |s|^2)^{1/4}$. When $(w,s) \in B_R(0)$ and $\epsilon < |r| < 1/\epsilon, (w,s) (\delta_r (z,t))^{-1} \in B_{R+\epsilon^2} (0)$, where h is the Koranyi norm of (z,t).

Hence, in the above equality $F_{\xi,\eta}$ can be replaced by $\tilde{F}_{\xi,\eta} = F_{\xi,\eta} \cdot \chi_{B_{R+h/\epsilon}} (0)$. Now by an application of Fubini, we get
\[
\|T_{\epsilon}^\gamma (z,t) f\|_p \leq \frac{1}{|B_R(0)|} \int_{\mathbb{R}^{n+1}} \int_{\mathbb{R}^n} |H_{\epsilon}^\gamma (z,t) \tilde{F}_{\xi,\eta} (w,s)|^p \, dw \, ds \, d\xi \, d\eta.
\]

Now, from the uniform boundedness of the truncated Hilbert transforms, we get
\[
\|T_{\epsilon}^\gamma (z,t) f\|_p \leq C_p \frac{1}{|B_R(0)|} \int_{\mathbb{R}^{n+1}} \int_{\mathbb{R}^n} |\tilde{F}_{\xi,\eta} (w,s)|^p \, dw \, ds \, d\xi \, d\eta
\]
\[
= C_p \frac{1}{|B_R(0)|} \int_{B_{R+h/\epsilon}} \int_{\mathbb{R}^{n+1}} |f (U (w,s)(\xi,\eta))|^p \, d\eta \, dw \, ds
\]
\[
= C_p \left(\frac{R + h/\epsilon}{R} \right)^{2n+2} \|f\|_p^p,
\]
again by the invariance of $d\xi \, d\eta$ under the U action. Letting $R \to \infty$, we see that
\[
\|T_{\epsilon}^\gamma (z,t) f\|_{L^p (\mathbb{R}^n)} \leq C_p \|f\|_{L^p (\mathbb{R}^n)}.
\]

Coming back to the boundedness of $H_{\epsilon}^\gamma (z,t)$, we can use a technique in Lemma 3.1 of [Str91] to reduce this to the boundedness of H_{γ}^ϵ on $L^p (\mathbb{R}^2)$ for the curve $\gamma = \{(t,t^2), t \in \mathbb{R}\}$.

Recall that
\[
H_{z,t} f (w,s) = \int_{\mathbb{R}} f (w - rz, s - r^2 t - r \text{Im} (w \bar{z})) \frac{dr}{r}.
\]

For $\sigma \in U(n)$, define $\rho(\sigma) f (w,s) = f (\sigma w, s)$. Then
\[
H_{z,t} (\rho(\sigma) f) (w,s) = \int_{\mathbb{R}} f (\sigma w - rz, s - r^2 t - r \text{Im} (w \bar{z})) \frac{dr}{r},
\]
\[
\rho(\sigma^{-1}) H_{z,t} (\rho(\sigma) f) (w,s) = H_{z,t} (\rho(\sigma) f) (\sigma^{-1} w, s)
\]
\[
= \int_{\mathbb{R}} f (w - rz, s - r^2 t - r \text{Im} (\sigma^{-1} w \bar{z})) \frac{dr}{r}
\]
\[
= \int_{\mathbb{R}} f (w - rz, s - t - r \text{Im} (w \sigma \bar{z})) \frac{dr}{r}.
\]

Since $\|\rho(\sigma) f\|_p = \|f\|_p$ and since there exists $\sigma \in U(n)$ such that $\rho(\sigma) (x + iy) = x_1 e_1$, it is enough to consider the operator
\[
f \to \int_{\mathbb{R}} f (u_1 - r x_1, w, s - r^2 t - rv_1 x_1) \frac{dr}{r},
\]
which is equivalent to the operator
\[
T_{(x,t,v)}f(u,s) = \int_{\mathbb{R}} f(u - rx, s - r^2 t - rvx) \frac{dr}{r}
\]
acting on functions defined on \(\mathbb{R}^2\). For \(\lambda_1, \lambda_2 > 0\), let
\[
\delta_{\lambda_1, \lambda_2}f(u, s) = f(\lambda_1 u, \lambda_2 s).
\]
Then \(\|\delta_{\lambda_1, \lambda_2}f\|_p = (\lambda_1 \lambda_2)^{-1/p} \|f\|_p\) and
\[
\delta_{1/\lambda_1, 1/\lambda_2} T_{(x,t,v)} \delta_{\lambda_1, \lambda_2} f(u, s) = \int_{\mathbb{R}} f(u - r \lambda_1 x, s - r^2 \lambda_2 t - r \lambda_2 vx) \frac{dr}{r}.
\]
Since we can choose \(\lambda_1, \lambda_2\) such that \(\lambda_1 x = \lambda_2 t = 1\), it is enough to get uniform estimates for operators of the form \(T_{(1,1,a)}\). That would imply that
\[
\|T_{(x,t,v)}f\|_p = \|\delta_{\lambda_1, \lambda_2} T_{(1,1,vx/t)} \delta_{1/\lambda_1, 1/\lambda_2} f\|_p
= (\lambda_1 \lambda_2)^{-1/p} \|T_{(1,1,vx/t)} \delta_{1/\lambda_1, 1/\lambda_2} f\|_p
\leq (\lambda_1 \lambda_2)^{-1/p} C_p \|\delta_{1/\lambda_1, 1/\lambda_2} f\|_p
= (\lambda_1 \lambda_2)^{-1/p} C_p (\lambda_1 \lambda_2)^{1/p} \|f\|_p.
\]
Now consider \(\tau_a f(u, s) = f(u, s + au)\) so that \(\|\tau_a f\|_p = \|f\|_p\). Since
\[
T_{(1,1,a)}(\tau_a^{-1} f)(u, s) = \int_{\mathbb{R}} (\tau_a^{-1} f)(u - r, s - r^2 - ar) \frac{dr}{r}
= \int_{\mathbb{R}} f(u - r, s - au - r^2) \frac{dr}{r},
\]
we have
\[
\tau_a T_{(1,1,a)}(\tau_a^{-1} f)(u, s) = T_{(1,1,a)}(\tau_a^{-1} f)(u, s + au)
= \int_{\mathbb{R}} f(u - r, s - r^2) \frac{dr}{r}.
\]
This is the Hilbert transform along the parabola \(\gamma(r) = (r, r^2)\) in \(\mathbb{R}^2\). Since
\[
\gamma(r) = \begin{cases}
\delta_+(1,1) & \text{if } r > 0, \\
0 & \text{if } r = 0, \\
\delta_-(1,1) & \text{if } r < 0
\end{cases}
\]
and the linear space spanned by \(\{\gamma(r)\}_{r > 0}\) is the same as the linear space spanned by \(\{\gamma(r)\}_{r < 0}\), namely \(\mathbb{R}^2\), \(\gamma(r)\) is a two-sided homogeneous curve (see Definition 3.1 in [SW78], p. 1261). Now we can appeal to Theorem 11 of [SW78], p. 1271] to get the uniform boundedness of the truncated Hilbert transforms \(H^\epsilon_{(z,t)}\) on \(L^p(\mathbb{H}^n)\). That is, there exist a finite constant \(C_p\), independent of \((z,t) \in \mathbb{H}^n\), \(n\) and \(\epsilon > 0\), such that
\[
\|H^\epsilon_{(z,t)} f\|_p \leq C_p \|f\|_p.
\]
\[\square\]
5. Proof of the main theorem

We first prove Theorem 2.2 regarding the boundedness of the individual Riesz transforms R_j and R^*_j.

Proof of Theorem 2.2. We first consider the operators R_j^s and R^*_j. In light of Propositions 3.1 and 4.1, we just need to prove that there exist a finite C, independent of n, such that

$$\|\tilde{Z}_j p_1(z,t)\|_{L^1(\mathbb{H}^n)}, \|\tilde{Z}_j^* p_1(z,t)\|_{L^1(\mathbb{H}^n)} \leq C.$$

As mentioned in Lemma 3 of [CMZ96], this follows from the fact that

$$p^n(z_1, z_2, \cdots, z_n, t) = p^1(z_1, \cdot) * p^1(z_2, \cdot) * \cdots * p^1(z_n, \cdot)(t),$$

where p^n is the heat kernel on \mathbb{H}^n. Now for the operators R_j and R^*_j, we need only to show that $(R^s_j f)$, $(R^*_j f)$ are Cauchy in $L^p(\mathbb{R}^{n+1})$. We have already seen that $\|R^s_j f\|_p \leq C\|T^{(z,t)}_\epsilon f\|_p$ and so it is enough to prove that $T^{(z,t)}_\epsilon f$ is Cauchy in $L^p(\mathbb{R}^{n+1})$. During the course of the proof of Proposition 4.1, we had observed that the operator $T^{(z,t)}_\epsilon$ is obtained by applying a transference on $H^\epsilon_{(z,t)}$ and that

$$\|T^{(z,t)}_\epsilon f\|_{L^p(\mathbb{R}^{n+1})} \leq \|H^\epsilon_{(z,t)} f\|_{L^p(\mathbb{H}^n)}.$$

Being truncated Hilbert transforms, $H^\epsilon_{(z,t)} f$ is Cauchy in $L^p(\mathbb{H}^n)$ [SW78 Theorem 11], and consequently, so is $T^{(z,t)}_\epsilon f$. \hfill \Box

Now we complete the proof of our main theorem. As mentioned during the discussion of Theorem 2.2, we only need to prove the boundedness of the operator R^ϵ obtained by replacing R_j and R^*_j by their truncated versions. We will be closely following [LP04] in proving this and so will skip some details. Using the property

$$\frac{1}{r} \frac{\partial p_1}{\partial r} = \frac{1}{x_j} \frac{\partial p_1}{\partial x_j} = \frac{1}{y_j} \frac{\partial p_1}{\partial y_j},$$

where $r = |z|$, we can rewrite

$$R^\epsilon_j f(\xi, \eta) = \frac{1}{\sqrt{\pi}} \int_{\mathbb{H}^n} (ix_j + y_j) T^{(z,t)}_\epsilon f(\xi, \eta) \frac{1}{r} \frac{\partial p_1}{\partial r}(z,t) dz dt$$

$$+ \frac{1}{2\sqrt{\pi}} \int_{\mathbb{H}^n} (x_j - y_j) T^{(z,t)}_\epsilon f(\xi, \eta) \frac{\partial p_1}{\partial t}(z,t) dz dt$$

and

$$R^*_\epsilon j f(\xi, \eta) = \frac{1}{\sqrt{\pi}} \int_{\mathbb{H}^n} (ix_j - y_j) T^{(z,t)}_\epsilon f(\xi, \eta) \frac{1}{r} \frac{\partial p_1}{\partial r}(z,t) dz dt$$

$$- \frac{1}{2\sqrt{\pi}} \int_{\mathbb{H}^n} (x_j + y_j) T^{(z,t)}_\epsilon f(\xi, \eta) \frac{\partial p_1}{\partial t}(z,t) dz dt.$$

For a fixed (ξ, η) we can choose $\lambda_1, \lambda_2, \ldots, \lambda_{2n}$ such that $\sum_{j=1}^{2n} |\lambda_j|^2 = 1$ and

$$|R^\epsilon f(\xi, \eta)| = \sum_{j=1}^{2n} \left(\lambda_j R_{j}^\epsilon f(\xi, \eta) + \lambda_{j+n} R_{j}^{*\epsilon} f(\xi, \eta) \right).$$
Now using the triangle inequality, Hölder’s inequality and also Lemma 2(a) of [LP04], we get

\[|R^\varepsilon f(\xi, \eta)| \leq C \|T^{(z,t)}_\varepsilon f(\xi, \eta)\|_{L^p(\frac{1}{p} \partial p \, dz \, dt)} \|x_1\|_{L^p(\frac{1}{p} \partial p \, dz \, dt)} + C \|T^{(z,t)}_\varepsilon f(\xi, \eta)\|_{L^p(\frac{1}{p} \partial p \, dz \, dt)} \|x_1\|_{L^p(\frac{1}{p} \partial p \, dz \, dt)}, \]

where \(C \) is a universal constant. Now the theorem follows from Proposition 4.1 and an application of Minkowski inequality along with the fact (proved in [LP04]) that

\[\int_{\mathbb{H}^n} |x_1|^p \frac{1}{r} \frac{\partial p_1}{\partial r} \, dz \, dt, \quad \int_{\mathbb{H}^n} |x_1|^p \frac{\partial p_1}{\partial t} \, dz \, dt \leq A_p, \ p \geq 0, \]

where \(A_p \) is independent of the dimension.

Acknowledgments

The authors are thankful to the referee for pointing out some errors and typos. The work of the first author was supported by the All India Council for Technical Education (AICTE). The work of the second author was supported by a J. C. Bose Fellowship from the Department of Science and Technology (DST) and also by a grant from UGC via DSA-SAP.

References

[Ste83] E. M. Stein, Some results in harmonic analysis in \(\mathbb{R}^n \), for \(n \to \infty \), Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 1, 71–73. MR699317 (84g:42019)

Department of Mathematics, National Institute of Technology, Calicut 673 601, India

Current address: Department of Mathematics, Indian Institute of Science, Bangalore 560 012, India

E-mail address: sanjay@math.iisc.ernet.in

Department of Mathematics, Indian Institute of Science, Bangalore 560 012, India

E-mail address: veluma@math.iisc.ernet.in