Dimension free boundedness of Riesz transforms for the Grushin operator
HTML articles powered by AMS MathViewer
- by P. K. Sanjay and S. Thangavelu
- Proc. Amer. Math. Soc. 142 (2014), 3839-3851
- DOI: https://doi.org/10.1090/S0002-9939-2014-12143-5
- Published electronically: July 8, 2014
- PDF | Request permission
Abstract:
Let $G = - \Delta _{\xi } - |\xi |^2 \frac {\partial ^2}{\partial \eta ^2}$ be the Grushin operator on $\mathbb {R}^n \times \mathbb {R}.$ We prove that the Riesz transforms associated to this operator are bounded on $L^p (\mathbb {R}^{n+1}), 1 < p < \infty$, and their norms are independent of dimension $n$.References
- Fabrice Baudoin and Nicola Garofalo, A note on the boundedness of Riesz transform for some subelliptic operators, Int. Math. Res. Not. IMRN 2 (2013), 398–421. MR 3010694, DOI 10.1093/imrn/rnr271
- Thierry Coulhon, Detlef Müller, and Jacek Zienkiewicz, About Riesz transforms on the Heisenberg groups, Math. Ann. 305 (1996), no. 2, 369–379. MR 1391221, DOI 10.1007/BF01444227
- Karel de Leeuw, On $L_{p}$ multipliers, Ann. of Math. (2) 81 (1965), 364–379. MR 174937, DOI 10.2307/1970621
- Javier Duoandikoetxea and José L. Rubio de Francia, Estimations indépendantes de la dimension pour les transformées de Riesz, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), no. 7, 193–196 (French, with English summary). MR 780616
- E. Harboure, L. de Rosa, C. Segovia, and J. L. Torrea, $L^p$-dimension free boundedness for Riesz transforms associated to Hermite functions, Math. Ann. 328 (2004), no. 4, 653–682. MR 2047645, DOI 10.1007/s00208-003-0501-2
- K. Jotsaroop, P. K. Sanjay, and S. Thangavelu, Riesz transforms and multipliers for the Grushin operator, J. Anal. Math. 119 (2013), 255–273. MR 3043153, DOI 10.1007/s11854-013-0008-z
- Françoise Lust-Piquard, Riesz transforms on generalized Heisenberg groups and Riesz transforms associated to the CCR heat flow, Publ. Mat. 48 (2004), no. 2, 309–333. MR 2091008, DOI 10.5565/PUBLMAT_{4}8204_{0}2
- Françoise Lust-Piquard, Dimension free estimates for Riesz transforms associated to the harmonic oscillator on $\Bbb R^n$, Potential Anal. 24 (2006), no. 1, 47–62. MR 2218202, DOI 10.1007/s11118-005-4389-1
- Gilles Pisier, Riesz transforms: a simpler analytic proof of P.-A. Meyer’s inequality, Séminaire de Probabilités, XXII, Lecture Notes in Math., vol. 1321, Springer, Berlin, 1988, pp. 485–501. MR 960544, DOI 10.1007/BFb0084154
- P. K. Ratnakumar and S. Thangavelu, Spherical means, wave equations, and Hermite-Laguerre expansions, J. Funct. Anal. 154 (1998), no. 2, 253–290. MR 1612697, DOI 10.1006/jfan.1997.3135
- E. M. Stein, Some results in harmonic analysis in $\textbf {R}^{n}$, for $n\rightarrow \infty$, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 1, 71–73. MR 699317, DOI 10.1090/S0273-0979-1983-15157-1
- Robert S. Strichartz, $L^p$ harmonic analysis and Radon transforms on the Heisenberg group, J. Funct. Anal. 96 (1991), no. 2, 350–406. MR 1101262, DOI 10.1016/0022-1236(91)90066-E
- P. K. Sanjay and Sundaram Thangavelu, Revisiting Riesz transforms on Heisenberg groups, Rev. Mat. Iberoam. 28 (2012), no. 4, 1091–1108. MR 2990135, DOI 10.4171/RMI/704
- Elias M. Stein and Stephen Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1239–1295. MR 508453, DOI 10.1090/S0002-9904-1978-14554-6
- Sundaram Thangavelu, An introduction to the uncertainty principle, Progress in Mathematics, vol. 217, Birkhäuser Boston, Inc., Boston, MA, 2004. Hardy’s theorem on Lie groups; With a foreword by Gerald B. Folland. MR 2008480, DOI 10.1007/978-0-8176-8164-7
- Lutz Weis, Operator-valued Fourier multiplier theorems and maximal $L_p$-regularity, Math. Ann. 319 (2001), no. 4, 735–758. MR 1825406, DOI 10.1007/PL00004457
Bibliographic Information
- P. K. Sanjay
- Affiliation: Department of Mathematics, National Institute of Technology, Calicut 673 601, India
- Address at time of publication: Department of Mathematics, Indian Institute of Science, Bangalore 560 012, India
- Email: sanjay@math.iisc.ernet.in
- S. Thangavelu
- Affiliation: Department of Mathematics, Indian Institute of Science, Bangalore 560 012, India
- Email: veluma@math.iisc.ernet.in
- Received by editor(s): August 11, 2012
- Received by editor(s) in revised form: November 17, 2012
- Published electronically: July 8, 2014
- Communicated by: Alexander Iosevich
- © Copyright 2014 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 142 (2014), 3839-3851
- MSC (2010): Primary 42Cxx, 42C05, 43A65
- DOI: https://doi.org/10.1090/S0002-9939-2014-12143-5
- MathSciNet review: 3251724