A note on Coulhon type inequalities
HTML articles powered by AMS MathViewer
- by Joaquim Martín and Mario Milman
- Proc. Amer. Math. Soc. 142 (2014), 4221-4237
- DOI: https://doi.org/10.1090/S0002-9939-2014-12133-2
- Published electronically: August 6, 2014
- PDF | Request permission
Abstract:
T. Coulhon introduced an interesting reformulation of the usual Sobolev inequalities. We characterize Coulhon type inequalities in terms of rearrangement inequalities.References
- Nadine Badr, Gagliardo-Nirenberg inequalities on manifolds, J. Math. Anal. Appl. 349 (2009), no. 2, 493–502. MR 2456207, DOI 10.1016/j.jmaa.2008.09.013
- D. Bakry, T. Coulhon, M. Ledoux, and L. Saloff-Coste, Sobolev inequalities in disguise, Indiana Univ. Math. J. 44 (1995), no. 4, 1033–1074. MR 1386760, DOI 10.1512/iumj.1995.44.2019
- F. Barthe, P. Cattiaux, and C. Roberto, Isoperimetry between exponential and Gaussian, Electron. J. Probab. 12 (2007), no. 44, 1212–1237. MR 2346509, DOI 10.1214/EJP.v12-441
- Jesús Bastero, Mario Milman, and Francisco J. Ruiz Blasco, A note on $L(\infty ,q)$ spaces and Sobolev embeddings, Indiana Univ. Math. J. 52 (2003), no. 5, 1215–1230. MR 2010324, DOI 10.1512/iumj.2003.52.2364
- Colin Bennett and Robert Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR 928802
- Serguei G. Bobkov and Christian Houdré, Some connections between isoperimetric and Sobolev-type inequalities, Mem. Amer. Math. Soc. 129 (1997), no. 616, viii+111. MR 1396954, DOI 10.1090/memo/0616
- Thierry Coulhon, Espaces de Lipschitz et inégalités de Poincaré, J. Funct. Anal. 136 (1996), no. 1, 81–113 (French, with English summary). MR 1375154, DOI 10.1006/jfan.1996.0022
- Thierry Coulhon, Dimensions at infinity for Riemannian manifolds, Potential Anal. 4 (1995), no. 4, 335–344. Potential theory and degenerate partial differential operators (Parma). MR 1354888, DOI 10.1007/BF01053451
- Thierry Coulhon, Heat kernel and isoperimetry on non-compact Riemannian manifolds, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002) Contemp. Math., vol. 338, Amer. Math. Soc., Providence, RI, 2003, pp. 65–99. MR 2039952, DOI 10.1090/conm/338/06071
- M. Cwikel and M. Milman, Sobolev inequalities in disguise and real interpolation, unpublished manuscript, 1996.
- A. M. Garsia and E. Rodemich, Monotonicity of certain functionals under rearrangement, Ann. Inst. Fourier (Grenoble) 24 (1974), no. 2, vi, 67–116 (English, with French summary). MR 414802
- Alexander Grigor′yan, Isoperimetric inequalities and capacities on Riemannian manifolds, The Maz′ya anniversary collection, Vol. 1 (Rostock, 1998) Oper. Theory Adv. Appl., vol. 109, Birkhäuser, Basel, 1999, pp. 139–153. MR 1747869
- Piotr Hajłasz and Pekka Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101. MR 1683160, DOI 10.1090/memo/0688
- Björn Jawerth and Mario Milman, Extrapolation theory with applications, Mem. Amer. Math. Soc. 89 (1991), no. 440, iv+82. MR 1046185, DOI 10.1090/memo/0440
- Jan Kališ and Mario Milman, Symmetrization and sharp Sobolev inequalities in metric spaces, Rev. Mat. Complut. 22 (2009), no. 2, 499–515. MR 2553946, DOI 10.5209/rev_{r}ema.2009.v22.n2.16292
- Michel Ledoux, Isopérimétrie et inégalités de Sobolev logarithmiques gaussiennes, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), no. 2, 79–82 (French, with English summary). MR 929114
- Giovanni Leoni, A first course in Sobolev spaces, Graduate Studies in Mathematics, vol. 105, American Mathematical Society, Providence, RI, 2009. MR 2527916, DOI 10.1090/gsm/105
- Joaquim Martín and Mario Milman, Pointwise symmetrization inequalities for Sobolev functions and applications, Adv. Math. 225 (2010), no. 1, 121–199. MR 2669351, DOI 10.1016/j.aim.2010.02.022
- Joaquim Martín and Mario Milman, Sobolev inequalities, rearrangements, isoperimetry and interpolation spaces, Concentration, functional inequalities and isoperimetry, Contemp. Math., vol. 545, Amer. Math. Soc., Providence, RI, 2011, pp. 167–193. MR 2858472, DOI 10.1090/conm/545/10771
- Joaquim Martín and Mario Milman, Isoperimetry and symmetrization for logarithmic Sobolev inequalities, J. Funct. Anal. 256 (2009), no. 1, 149–178. MR 2475420, DOI 10.1016/j.jfa.2008.09.001
- J. Martin and M. Milman, Fractional Sobolev inequalities: Symmetrization, isoperimetry and interpolation, preprint, arXiv:1205.1231.
- Joaquim Martin, Mario Milman, and Evgeniy Pustylnik, Sobolev inequalities: symmetrization and self-improvement via truncation, J. Funct. Anal. 252 (2007), no. 2, 677–695. MR 2360932, DOI 10.1016/j.jfa.2007.05.017
- Vladimir Maz’ya, Sobolev spaces with applications to elliptic partial differential equations, Second, revised and augmented edition, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 342, Springer, Heidelberg, 2011. MR 2777530, DOI 10.1007/978-3-642-15564-2
- S. Poornima, An embedding theorem for the Sobolev space $W^{1,1}$, Bull. Sci. Math. (2) 107 (1983), no. 3, 253–259 (English, with French summary). MR 719267
- Jie Xiao, The $p$-Faber-Krahn inequality noted, Around the research of Vladimir Maz’ya. I, Int. Math. Ser. (N. Y.), vol. 11, Springer, New York, 2010, pp. 373–390. MR 2723828, DOI 10.1007/978-1-4419-1341-8_{1}7
Bibliographic Information
- Joaquim Martín
- Affiliation: Department of Mathematics, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Email: jmartin@mat.uab.cat
- Mario Milman
- Affiliation: Department of Mathematics, Florida Atlantic University, Boca Raton, Florida 33431
- Email: extrapol@bellsouth.net
- Received by editor(s): June 8, 2012
- Received by editor(s) in revised form: January 11, 2013
- Published electronically: August 6, 2014
- Additional Notes: The first author was supported in part by Grants MTM2010-14946, MTM-2010-16232
The work of the second author was partially supported by a grant from the Simons Foundation (#207929). - Communicated by: Richard Rochberg
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 142 (2014), 4221-4237
- MSC (2010): Primary 46E30, 26D10
- DOI: https://doi.org/10.1090/S0002-9939-2014-12133-2
- MathSciNet review: 3266991