CORRIGENDUM AND IMPROVEMENT TO “CHAOTIC SOLUTION FOR THE BLACK-SCHOLES EQUATION”

HASSENM. EMAMIRAD, GISÈLE RUIZ GOLDSTEIN, AND JEROME A. GOLDSTEIN

(Communicated by Thomas Schlumprecht)

Abstract. We correct an error and improve the main result in our paper Chaotic solution for the Black-Scholes equation, Proc. Amer. Math. Soc. 140 (2012), no. 6, 2043–2052.

In the proof of Lemma 3.5 in our paper Chaotic solution for the Black-Scholes equation, Proc. Amer. Math. Soc. 140 (2012), no. 6, 2043–2052, the function we denoted by $g(z) = \nu^2 z^2 + (r - \nu^2)z - r$ should have been, according to (3.2), $z^2 + (r/\nu - \nu)z - r$. Thus

$$\text{Re} \ g(z) = x^2 - y_0^2 + \left(\frac{r}{\nu} - \nu\right)x - r = 0$$

with $z = x + iy_0$. We must find (x, y_0) with $0 < x < \nu s$, $y_0 \in \mathbb{R}$ such that

$$x^2 + \left(\frac{r}{\nu} - \nu\right)x - r = y_0^2. \tag{3.3}$$

Call C the curve represented by the graph of the quadratic function $y = x^2 + \left(\frac{r}{\nu} - \nu\right)x - r$. As Figure 1 shows, for $\nu < x < \nu s$, there are uncountably many points (x, y) on the dashed portion of C with $y > 0$. For each such point let $y_0 = \sqrt{y}$. This gives uncountably many solutions of (3.3).

With this correction in the proof, our main results, Theorems 3.6 and 3.7, have the same conclusions under weaker hypotheses. The following is a precise statement of this.

Theorem 3.6'. Let $s > 1$, $\tau \geq 0$ and define the complex Banach space

$$Y^{s,\tau} := \{u \in C(0, \infty) : \lim_{x \to 0} \frac{|u(x)/(1 + x^{-\tau})|}{u(x)/(1 + x^s)} = 0\}$$

with norm

$$\|u\|_{s,\tau} = \sup_{x > 0} \frac{|u(x)/(1 + x^{-\tau})(1 + x^s)|}{u(x)/(1 + x^{-\tau})}.$$

The Black-Scholes equation

$$\frac{\partial v}{\partial t} = \left(\sigma^2/2\right)x^2 \frac{\partial^2 v}{\partial x^2} + rx \frac{\partial v}{\partial x} - rv,$$

for $\sigma > 0$, $r > 0$, is governed by a (C_0) semigroup $T = \{T(t) : t \geq 0\}$ on $Y^{s,\tau}$. This semigroup is chaotic. If $Y^{s,\tau}_{\mathbb{R}}$ consists of the real functions in $Y^{s,\tau}$, then S_T, the restriction of T to $Y^{s,\tau}_{\mathbb{R}}$, is a chaotic (C_0) semigroup.

Received by the editors December 10, 2012.

2010 Mathematics Subject Classification. Primary 47D06, 91B28.

Key words and phrases. Hypercyclic and chaotic semigroup, Black-Scholes equation.

This research was in part supported by a grant from IPM #91470221.
Thus we do not need the assumption $\sigma s > \sqrt{2}$, which was made in the original Theorems 3.6 and 3.7. Consequently the choice of spaces for the chaosy of the Black-Scholes semigroup is independent of the volatility σ, which gives a conceptually cleaner and improved result.

Laboratoire de Mathématiques, Université de Poitiers, teleport 2, BP 179, 86960 Chassneuil du Poitou, Cedex, France
E-mail address: emamirad@math.univ-poitiers.fr

Department of Mathematical Sciences, The University of Memphis, Memphis, Tennessee 38152
E-mail address: ggoldste@memphis.edu

Department of Mathematical Sciences, The University of Memphis, Memphis, Tennessee 38152
E-mail address: jgoldste@memphis.edu