Orbit equivalent substitution dynamical systems and complexity
HTML articles powered by AMS MathViewer
- by S. Bezuglyi and O. Karpel
- Proc. Amer. Math. Soc. 142 (2014), 4155-4169
- DOI: https://doi.org/10.1090/S0002-9939-2014-12139-3
- Published electronically: July 31, 2014
- PDF | Request permission
Abstract:
For any primitive proper substitution $\sigma$, we give explicit constructions of countably many pairwise non-isomorphic substitution dynamical systems $\{(X_{\zeta _n}, T_{\zeta _n})\}_{n=1}^{\infty }$ such that they all are (strong) orbit equivalent to $(X_{\sigma }, T_{\sigma })$. We show that the complexity of the substitution dynamical systems $\{(X_{\zeta _n}, T_{\zeta _n})\}$ is the essential difference that prevents them from being isomorphic. Given a primitive (not necessarily proper) substitution $\tau$, we find a stationary simple properly ordered Bratteli diagram with the least possible number of vertices such that the corresponding Bratteli-Vershik system is orbit equivalent to $(X_{\tau }, T_{\tau })$.References
- Ethan Akin, Good measures on Cantor space, Trans. Amer. Math. Soc. 357 (2005), no. 7, 2681–2722. MR 2139523, DOI 10.1090/S0002-9947-04-03524-X
- S. Bezuglyi and O. Karpel, Homeomorphic measures on stationary Bratteli diagrams, J. Funct. Anal. 261 (2011), no. 12, 3519–3548. MR 2838033, DOI 10.1016/j.jfa.2011.08.009
- S. Bezuglyi, J. Kwiatkowski, and K. Medynets, Aperiodic substitution systems and their Bratteli diagrams, Ergodic Theory Dynam. Systems 29 (2009), no. 1, 37–72. MR 2470626, DOI 10.1017/S0143385708000230
- S. Bezuglyi, J. Kwiatkowski, K. Medynets, and B. Solomyak, Invariant measures on stationary Bratteli diagrams, Ergodic Theory Dynam. Systems 30 (2010), no. 4, 973–1007. MR 2669408, DOI 10.1017/S0143385709000443
- Julien Cassaigne, Special factors of sequences with linear subword complexity, Developments in language theory, II (Magdeburg, 1995) World Sci. Publ., River Edge, NJ, 1996, pp. 25–34. MR 1466182
- Julien Cassaigne, Complexité et facteurs spéciaux, Bull. Belg. Math. Soc. Simon Stevin 4 (1997), no. 1, 67–88 (French, with English and French summaries). Journées Montoises (Mons, 1994). MR 1440670
- F. Durand, B. Host, and C. Skau, Substitutional dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory Dynam. Systems 19 (1999), no. 4, 953–993. MR 1709427, DOI 10.1017/S0143385799133947
- Sébastien Ferenczi, Complexity of sequences and dynamical systems, Discrete Math. 206 (1999), no. 1-3, 145–154. Combinatorics and number theory (Tiruchirappalli, 1996). MR 1665394, DOI 10.1016/S0012-365X(98)00400-2
- N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Mathematics, vol. 1794, Springer-Verlag, Berlin, 2002. Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel. MR 1970385, DOI 10.1007/b13861
- A. H. Forrest, $K$-groups associated with substitution minimal systems, Israel J. Math. 98 (1997), 101–139. MR 1459849, DOI 10.1007/BF02937330
- Thierry Giordano, Ian F. Putnam, and Christian F. Skau, Topological orbit equivalence and $C^*$-crossed products, J. Reine Angew. Math. 469 (1995), 51–111. MR 1363826
- Richard H. Herman, Ian F. Putnam, and Christian F. Skau, Ordered Bratteli diagrams, dimension groups and topological dynamics, Internat. J. Math. 3 (1992), no. 6, 827–864. MR 1194074, DOI 10.1142/S0129167X92000382
- D. A. Lind, The entropies of topological Markov shifts and a related class of algebraic integers, Ergodic Theory Dynam. Systems 4 (1984), no. 2, 283–300. MR 766106, DOI 10.1017/S0143385700002443
- Konstantin Medynets, Cantor aperiodic systems and Bratteli diagrams, C. R. Math. Acad. Sci. Paris 342 (2006), no. 1, 43–46 (English, with English and French summaries). MR 2193394, DOI 10.1016/j.crma.2005.10.024
- Melvyn B. Nathanson, Additive number theory, Graduate Texts in Mathematics, vol. 165, Springer-Verlag, New York, 1996. Inverse problems and the geometry of sumsets. MR 1477155, DOI 10.1007/978-1-4757-3845-2
- Martine Queffélec, Substitution dynamical systems—spectral analysis, 2nd ed., Lecture Notes in Mathematics, vol. 1294, Springer-Verlag, Berlin, 2010. MR 2590264, DOI 10.1007/978-3-642-11212-6
- Hisatoshi Yuasa, On the topological orbit equivalence in a class of substitution minimal systems, Tokyo J. Math. 25 (2002), no. 2, 221–240. MR 1948661, DOI 10.3836/tjm/1244208850
Bibliographic Information
- S. Bezuglyi
- Affiliation: Institute for Low Temperature Physics, Kharkov, Ukraine
- MR Author ID: 215325
- Email: bezuglyi@ilt.kharkov.ua
- O. Karpel
- Affiliation: Institute for Low Temperature Physics, Kharkov, Ukraine
- MR Author ID: 953173
- Email: helen.karpel@gmail.com
- Received by editor(s): January 10, 2012
- Received by editor(s) in revised form: September 18, 2012, and January 3, 2013
- Published electronically: July 31, 2014
- Communicated by: Bryna Kra
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 142 (2014), 4155-4169
- MSC (2010): Primary 37B10; Secondary 37A20, 37B05
- DOI: https://doi.org/10.1090/S0002-9939-2014-12139-3
- MathSciNet review: 3266986