Topological complexity of wedges and covering maps
HTML articles powered by AMS MathViewer
- by Alexander Dranishnikov
- Proc. Amer. Math. Soc. 142 (2014), 4365-4376
- DOI: https://doi.org/10.1090/S0002-9939-2014-12146-0
- Published electronically: August 6, 2014
- PDF | Request permission
Abstract:
We present some results supporting the Iwase-Sakai conjecture about coincidence of the topological complexity $\mathrm {TC}(X)$ and monoidal topological complexity $\mathrm {TC}^M(X)$. Using these results we provide lower and upper bounds for the topological complexity of the wedge $X\vee Y$. We use these bounds to give a counterexample to the conjecture asserting that $\mathrm {TC}(X’)\le \mathrm {TC}(X)$ for any covering map $p : X’\to X$.
Also we discuss a possible reduction of the monoidal topological complexity to the Lusternik-Schnirelmann category.
References
- I. Berstein and P. J. Hilton, Category and generalized Hopf invariants, Illinois J. Math. 4 (1960), 437–451. MR 126276
- Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré, Lusternik-Schnirelmann category, Mathematical Surveys and Monographs, vol. 103, American Mathematical Society, Providence, RI, 2003. MR 1990857, DOI 10.1090/surv/103
- Alexander Dranishnikov, The Lusternik-Schnirelmann category and the fundamental group, Algebr. Geom. Topol. 10 (2010), no. 2, 917–924. MR 2629770, DOI 10.2140/agt.2010.10.917
- Michael Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), no. 2, 211–221. MR 1957228, DOI 10.1007/s00454-002-0760-9
- Michael Farber, Topology of robot motion planning, Morse theoretic methods in nonlinear analysis and in symplectic topology, NATO Sci. Ser. II Math. Phys. Chem., vol. 217, Springer, Dordrecht, 2006, pp. 185–230. MR 2276952, DOI 10.1007/1-4020-4266-3_{0}5
- Michael Farber, Instabilities of robot motion, Topology Appl. 140 (2004), no. 2-3, 245–266. MR 2074919, DOI 10.1016/j.topol.2003.07.011
- Michael Farber, Invitation to topological robotics, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008. MR 2455573, DOI 10.4171/054
- Michael Farber, Serge Tabachnikov, and Sergey Yuzvinsky, Topological robotics: motion planning in projective spaces, Int. Math. Res. Not. 34 (2003), 1853–1870. MR 1988783, DOI 10.1155/S1073792803210035
- J. Garcia-Calcines and L. Vandembroucq, Weak sectional category, J. Lond. Math. Soc. (2) 82 (2010), no. 3, 621–642. MR 2739059, DOI 10.1112/jlms/jdq048
- J. M. García Calcines and L. Vandembroucq, Topological complexity and the homotopy cofibre of the diagonal map, Math. Z. 274 (2013), no. 1-2, 145–165. MR 3054321, DOI 10.1007/s00209-012-1061-5
- Norio Iwase and Michihiro Sakai, Topological complexity is a fibrewise L-S category, Topology Appl. 157 (2010), no. 1, 10–21. MR 2556074, DOI 10.1016/j.topol.2009.04.056
- Norio Iwase and Michihiro Sakai, Erratum to “Topological complexity is a fibrewise L-S category” [Topology Appl. 157 (1) (2010) 10–21] [MR2556074], Topology Appl. 159 (2012), no. 10-11, 2810–2813. MR 2923451, DOI 10.1016/j.topol.2012.03.009
- I. M. James, On category, in the sense of Lusternik-Schnirelmann, Topology 17 (1978), no. 4, 331–348. MR 516214, DOI 10.1016/0040-9383(78)90002-2
- Phillip A. Ostrand, Dimension of metric spaces and Hilbert’s problem $13$, Bull. Amer. Math. Soc. 71 (1965), 619–622. MR 177391, DOI 10.1090/S0002-9904-1965-11363-5
- A. S. Schwarz, The genus of a fiber space, Amer. Math. Soc. Transl. (2), 55, Amer. Math. Soc., Providence, RI, 1966, pp. 49–140.
- Tammo tom Dieck, Algebraic topology, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008. MR 2456045, DOI 10.4171/048
Bibliographic Information
- Alexander Dranishnikov
- Affiliation: Department of Mathematics, 358 Little Hall, University of Florida, Gainesville, Florida 32611-8105
- MR Author ID: 212177
- Email: dranish@math.ufl.edu
- Received by editor(s): July 31, 2012
- Received by editor(s) in revised form: August 11, 2012, August 12, 2012, September 25, 2012, and January 15, 2013
- Published electronically: August 6, 2014
- Additional Notes: This work was supported by NSF grant DMS-0904278
- Communicated by: Daniel Ruberman
- © Copyright 2014 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 142 (2014), 4365-4376
- MSC (2010): Primary 55M30; Secondary 57N65, 54F45
- DOI: https://doi.org/10.1090/S0002-9939-2014-12146-0
- MathSciNet review: 3267004