On the semiprimitivity of finitely generated algebras
HTML articles powered by AMS MathViewer
- by Jan Okniński
- Proc. Amer. Math. Soc. 142 (2014), 4095-4098
- DOI: https://doi.org/10.1090/S0002-9939-2014-12187-3
- Published electronically: August 18, 2014
- PDF | Request permission
Abstract:
Finitely generated associative algebras $A=K\langle a_{1},\ldots , a_{n}\rangle$ over a field $K$ defined by homogeneous relations are considered. If there exists an order on the associated free monoid $\mathrm {FM}_{n}$ of rank $n$ such that the set of normal forms of elements of $A$ is a regular language in $\mathrm {FM}_{n}$, then the algebra $A$ is semiprimitive provided that the associated monomial algebra is semiprime.References
- Jason P. Bell and Pinar Colak, Primitivity of finitely presented monomial algebras, J. Pure Appl. Algebra 213 (2009), no. 7, 1299–1305. MR 2497577, DOI 10.1016/j.jpaa.2008.11.039
- Ferran Cedó and Jan Okniński, Gröbner bases for quadratic algebras of skew type, Proc. Edinb. Math. Soc. (2) 55 (2012), no. 2, 387–401. MR 2928501, DOI 10.1017/S0013091511000447
- Mikhail V. Kochetov, V. T. Filippov, V. K. Kharchenko, and I. P. Shestakov (eds.), Dniester notebook: unsolved problems in the theory of rings and modules, Non-associative algebra and its applications, Lect. Notes Pure Appl. Math., vol. 246, Chapman & Hall/CRC, Boca Raton, FL, 2006, pp. 461–516. Translated from the 1993 Russian edition [MR1310114] by Murray R. Bremner and Mikhail V. Kochetov and edited by V. T. Filippov, V. K. Kharchenko and I. P. Shestakov. MR 2203726, DOI 10.1201/9781420003451.axb
- Carl Faith, Algebra. II, Grundlehren der Mathematischen Wissenschaften, No. 191, Springer-Verlag, Berlin-New York, 1976. Ring theory. MR 0427349
- G. Karpilovsky, The Jacobson radical of classical rings, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 53, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1991. MR 1124405
- Günter R. Krause and Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, Revised edition, Graduate Studies in Mathematics, vol. 22, American Mathematical Society, Providence, RI, 2000. MR 1721834, DOI 10.1090/gsm/022
- Jan Krempa and Jan Okniński, Some examples of affine monoid algebras, Comm. Algebra 40 (2012), no. 1, 78–103. MR 2876291, DOI 10.1080/00927872.2010.524685
- Gérard Lallement, Semigroups and combinatorial applications, Pure and Applied Mathematics, John Wiley & Sons, New York-Chichester-Brisbane, 1979. MR 530552
- H. Li, Recognizing the semiprimitivity of N-graded algebras via Gröbner bases, preprint arXiv:1110.2248v1, to appear in Algebra Colloquium.
- Jonas Månsson and Patrik Nordbeck, Regular Gröbner bases, J. Symbolic Comput. 33 (2002), no. 2, 163–181. MR 1879379, DOI 10.1006/jsco.2001.0500
- Jonas Månsson and Patrik Nordbeck, A generalized Ufnarovski graph, Appl. Algebra Engrg. Comm. Comput. 16 (2005), no. 5, 293–306. MR 2233759, DOI 10.1007/s00200-005-0178-8
- Jan Okniński, Semigroup algebras, Monographs and Textbooks in Pure and Applied Mathematics, vol. 138, Marcel Dekker, Inc., New York, 1991. MR 1083356
- Jan Okniński, Structure of prime finitely presented monomial algebras, J. Algebra 320 (2008), no. 8, 3199–3205. MR 2450723, DOI 10.1016/j.jalgebra.2008.08.003
- Donald S. Passman, The algebraic structure of group rings, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. MR 0470211
- Agata Smoktunowicz, Some results in noncommutative ring theory, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 259–269. MR 2275597
- V. A. Ufnarovskij, Combinatorial and asymptotic methods in algebra [ MR1060321 (92h:16024)], Algebra, VI, Encyclopaedia Math. Sci., vol. 57, Springer, Berlin, 1995, pp. 1–196. MR 1360005, DOI 10.1007/978-3-662-06292-0_{1}
- Efim Zelmanov, Some open problems in the theory of infinite dimensional algebras, J. Korean Math. Soc. 44 (2007), no. 5, 1185–1195. MR 2348741, DOI 10.4134/JKMS.2007.44.5.1185
Bibliographic Information
- Jan Okniński
- Affiliation: Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland
- Email: okninski@mimuw.edu.pl
- Received by editor(s): April 11, 2012
- Received by editor(s) in revised form: February 1, 2013
- Published electronically: August 18, 2014
- Additional Notes: This work was supported by MNiSW research grant N201 420539
- Communicated by: Birge Huisgen-Zimmermann
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 142 (2014), 4095-4098
- MSC (2010): Primary 16S15, 16N20; Secondary 16S36, 20M25, 68Q70
- DOI: https://doi.org/10.1090/S0002-9939-2014-12187-3
- MathSciNet review: 3266980