Heegner points and Jochnowitz congruences on Shimura curves
HTML articles powered by AMS MathViewer
- by Stefano Vigni
- Proc. Amer. Math. Soc. 142 (2014), 4113-4126
- DOI: https://doi.org/10.1090/S0002-9939-2014-12188-5
- Published electronically: August 14, 2014
- PDF | Request permission
Abstract:
Given an elliptic curve $E$ over $\mathbb {Q}$, a suitable imaginary quadratic field $K$ and a quaternionic Hecke eigenform $g$ of weight $2$ obtained from $E$ by level raising such that the sign in the functional equation for $L_K(E,s)$ (respectively, $L_K(g,1)$) is $-1$ (respectively, $+1$), we prove a “Jochnowitz congruence” between the algebraic part of $L’_K(E,1)$ (expressed in terms of Heegner points on Shimura curves) and the algebraic part of $L_K(g,1)$. This establishes a relation between Zhang’s formula of Gross–Zagier type for central derivatives of $L$-series and his formula of Gross type for special values. Our results extend to the context of Shimura curves attached to division quaternion algebras previous results of Bertolini and Darmon for Heegner points on classical modular curves.References
- Amod Agashe, Kenneth A. Ribet, and William A. Stein, The modular degree, congruence primes, and multiplicity one, Number theory, analysis and geometry, Springer, New York, 2012, pp. 19–49. MR 2867910, DOI 10.1007/978-1-4614-1260-1_{2}
- M. Bertolini and H. Darmon, Heegner points on Mumford-Tate curves, Invent. Math. 126 (1996), no. 3, 413–456. MR 1419003, DOI 10.1007/s002220050105
- Massimo Bertolini and Henri Darmon, A rigid analytic Gross-Zagier formula and arithmetic applications, Ann. of Math. (2) 146 (1997), no. 1, 111–147. With an appendix by Bas Edixhoven. MR 1469318, DOI 10.2307/2951833
- Massimo Bertolini and Henri Darmon, Heegner points, $p$-adic $L$-functions, and the Cerednik-Drinfeld uniformization, Invent. Math. 131 (1998), no. 3, 453–491. MR 1614543, DOI 10.1007/s002220050211
- M. Bertolini and H. Darmon, Euler systems and Jochnowitz congruences, Amer. J. Math. 121 (1999), no. 2, 259–281. MR 1680333
- M. Bertolini and H. Darmon, Iwasawa’s main conjecture for elliptic curves over anticyclotomic $\Bbb Z_p$-extensions, Ann. of Math. (2) 162 (2005), no. 1, 1–64. MR 2178960, DOI 10.4007/annals.2005.162.1
- Pete L. Clark, On the Hasse principle for Shimura curves, Israel J. Math. 171 (2009), 349–365. MR 2520114, DOI 10.1007/s11856-009-0053-6
- Christophe Cornut and Vinayak Vatsal, Nontriviality of Rankin-Selberg $L$-functions and CM points, $L$-functions and Galois representations, London Math. Soc. Lecture Note Ser., vol. 320, Cambridge Univ. Press, Cambridge, 2007, pp. 121–186. MR 2392354, DOI 10.1017/CBO9780511721267.005
- Henri Darmon, Rational points on modular elliptic curves, CBMS Regional Conference Series in Mathematics, vol. 101, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2004. MR 2020572
- Fred Diamond and Richard Taylor, Nonoptimal levels of mod $l$ modular representations, Invent. Math. 115 (1994), no. 3, 435–462. MR 1262939, DOI 10.1007/BF01231768
- Benedict H. Gross, Heights and the special values of $L$-series, Number theory (Montreal, Que., 1985) CMS Conf. Proc., vol. 7, Amer. Math. Soc., Providence, RI, 1987, pp. 115–187. MR 894322
- Benedict H. Gross and James A. Parson, On the local divisibility of Heegner points, Number theory, analysis and geometry, Springer, New York, 2012, pp. 215–241. MR 2867919, DOI 10.1007/978-1-4614-1260-1_{1}1
- David Helm, On maps between modular Jacobians and Jacobians of Shimura curves, Israel J. Math. 160 (2007), 61–117. MR 2342491, DOI 10.1007/s11856-007-0056-0
- Naomi Jochnowitz, A $p$-adic conjecture about derivatives of $L$-series attached to modular forms, $p$-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991) Contemp. Math., vol. 165, Amer. Math. Soc., Providence, RI, 1994, pp. 239–263. MR 1279612, DOI 10.1090/conm/165/01608
- San Ling, Shimura subgroups and degeneracy maps, J. Number Theory 54 (1995), no. 1, 39–59. MR 1352635, DOI 10.1006/jnth.1995.1100
- B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33–186 (1978). With an appendix by Mazur and M. Rapoport. MR 488287
- K. A. Ribet, On modular representations of $\textrm {Gal}(\overline \textbf {Q}/\textbf {Q})$ arising from modular forms, Invent. Math. 100 (1990), no. 2, 431–476. MR 1047143, DOI 10.1007/BF01231195
- David Peter Roberts, Shimura curves analogous to X(0)(N), ProQuest LLC, Ann Arbor, MI, 1989. Thesis (Ph.D.)–Harvard University. MR 2637583
- Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331 (French). MR 387283, DOI 10.1007/BF01405086
- V. Vatsal, Special values of anticyclotomic $L$-functions, Duke Math. J. 116 (2003), no. 2, 219–261. MR 1953292, DOI 10.1215/S0012-7094-03-11622-1
- Shouwu Zhang, Heights of Heegner points on Shimura curves, Ann. of Math. (2) 153 (2001), no. 1, 27–147. MR 1826411, DOI 10.2307/2661372
- Shou-Wu Zhang, Gross-Zagier formula for $\textrm {GL}_2$, Asian J. Math. 5 (2001), no. 2, 183–290. MR 1868935, DOI 10.4310/AJM.2001.v5.n2.a1
Bibliographic Information
- Stefano Vigni
- Affiliation: Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy
- MR Author ID: 842395
- Email: vigni@dima.unige.it
- Received by editor(s): May 17, 2012
- Received by editor(s) in revised form: February 5, 2013
- Published electronically: August 14, 2014
- Communicated by: Matthew A. Papanikolas
- © Copyright 2014 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 142 (2014), 4113-4126
- MSC (2010): Primary 11G05, 11G40
- DOI: https://doi.org/10.1090/S0002-9939-2014-12188-5
- MathSciNet review: 3266982