WEIGHTED ESTIMATES FOR L_1-VECTOR FIELDS

AHMED LOULIT

(Communicated by Alexander Iosevich)

Dedicated to Professor Jean-Pierre Gossez on the occasion of his 70th birthday

ABSTRACT. In the context of weighted spaces, we study some types of Bourgain-Brezis and Lanzani-Stein inequalities.

INTRODUCTION

In the classical Hodge theory the following a priori estimate holds: if $f \in C^\infty_c(R^n; \Lambda^l)$ and $1 < p < \infty$, one has

\begin{equation}
\| \nabla f \|_{L^p} \leq \| df \|_{L^p} + \| \delta f \|_{L^p},
\end{equation}

where d is the exterior differential operator and δ is its dual. The estimate (0.1) is known to be false if $p = 1$ or $p = \infty$. The Sobolev imbedding and the estimate (0.1) lead to

\begin{equation}
\| f \|_{L^{p_\ast}} \leq \| df \|_{L^p} + \| \delta f \|_{L^p},
\end{equation}

with $\frac{1}{p_\ast} = \frac{1}{p} - \frac{1}{n}$. When $p = 1$, J. Bourgain and H. Brezis [1] have obtained the estimate

\begin{equation}
\| f \|_{L^{n/(n-1)}} \leq \| df \|_{L^1} + \| \delta f \|_{L^1}.
\end{equation}

L. Lanzani and E. Stein [9] have obtained the same result using an argument developed by J. Van Schaftingen [12]. I. Mitrea and M. Mitrea [11] have extended these estimates to homogeneous Besov spaces. Using interpolation theory, they could replace the norm $\| f \|_{L^{n/(n-1)}}$ by $\| f \|_{\dot{B}^{\gamma,q}_{p,w}}$ with $\frac{1}{p} - \frac{\gamma}{n} = 1 - \frac{1}{n}$, $0 < \gamma < 1$ and $q = \frac{2}{1-\gamma}$. In a recent work [13], Van Schaftingen has extended the result of Mitrea and Mitrea, taking any $q > 1$ and $0 < \gamma < 1$. In [10] we have also obtained some similar results; among them is the following estimate:

Let $\gamma \in \mathbb{R}$, $0 < p < \infty$ and w be in the Muckenhoupt class A_∞. Then

\begin{equation}
\| \nabla f \|_{\dot{F}^{\gamma,q}_{p,w}} \leq \| df \|_{\dot{F}^{\gamma,q}_{p,w}} + \| \delta f \|_{\dot{F}^{\gamma,q}_{p,w}}.
\end{equation}

A consequence of (0.4) is the following:

Let γ, $\beta \in \mathbb{R}$ s.t. $0 < 1 - \gamma + \beta$, $0 < p < \infty$ and $w \in A_\infty$ satisfying that for some $d > 0$, $w(B(x,t)) = \int_{B(x,t)} wdy \geq C t^d$ for all x and all $t > 0$. Then

\begin{equation}
\| f \|_{\dot{F}^{\gamma,q}_{p,w}} \leq \| df \|_{\dot{F}^{\beta,q}_{p,w}} + \| \delta f \|_{\dot{F}^{\beta,q}_{p,w}},
\end{equation}

Received by the editors September 3, 2012 and, in revised form, January 4, 2013.

2010 Mathematics Subject Classification. Primary 35-XX, 32Wxx, 53Cxx.

Key words and phrases. Differential forms, weighted Triebel-Lizorkin spaces, exterior derivative, Sobolev-Gagliardo-Nirenberg inequality.

©2014 American Mathematical Society
Reverts to public domain 28 years from publication
with $\frac{1}{p^\ast} = \frac{1}{p} - \frac{1-\gamma+\beta}{d}$. In particular we have

\[(0.6) \quad \|f\|_{L^{p^\ast}(w)} \leq \|df\|_{H^p(w)} + \|\delta f\|_{H^p(w)},\]

with $\frac{1}{p^\ast} = \frac{1}{p} - \frac{1}{d}$ and p is assumed to satisfy $p > \frac{d}{d+1}$. Here $H^p(w)$ denotes the weighted Hardy space. In particular, if we take $p = 1$, then

\[(0.7) \quad \|f\|_{L^{d/(d-1)}(w)} \leq \|df\|_{H^1(w)} + \|\delta f\|_{H^1(w)},\]

which is a good substitute for the estimate (0.3). In this work we extend the estimate (0.3) as follows.

Theorem 0.1. Let $\gamma, \beta \in \mathbb{R}$ s.t. $0 < 1 - \gamma + \beta$ and $n \leq d < \infty$. Assume $w \in A_d(\mathbb{R} \times \mathbb{R}^{n-1})$ satisfying the condition (2.2). If $2 \leq l \leq n - 2$, then

\[(0.8) \quad \|f\|_{L^{p'}(w^{1-p'})} \leq \|df\|_{L^1} + \|\delta f\|_{L^1},\]

with $p' = \frac{d}{d-1}$.

Remark 0.1. When $l = 1$, a substitute for (0.8) holds with $\|\delta f\|_{L^1}$ replaced by $\|\delta f\|_{H^1}$. Similarly for $l = n - 1$ when we replace $\|df\|_{L^1}$ by $\|df\|_{H^1}$.

Notation. The constant C may have different values even in the same line, but does not depend on f. $A \approx B$ for positive A and B mean that there exists $C > 0$ such that $C^{-1}A \leq B \leq CA$ and $A \preceq B$ stands for $A \leq CB$.

1. **Some background tools**

1.1. **Muckenhoupt class.** We briefly recall some fundamentals on Muckenhoupt classes. Such classes are important tools in many areas of mathematics, including harmonic analysis and partial differential equations. Good references are [6,14,15].

Let $0 < p < \infty$. We say that $f \in L^p(w)$ if and only if

$$\|f\|_{L^p(w)} = \left(\int_{\mathbb{R}^n} |f(x)|^p w(x) dx \right)^{\frac{1}{p}} < \infty,$$

and f is in the weak-L^p space, or $f \in L^{p,\infty}(w)$ if and only if

$$\|f\|_{L^{p,\infty}(w)} = \sup_{\lambda > 0} \left(\lambda \left[w \{x \in \mathbb{R}^n : |f(x)| > \lambda \} \right]^{\frac{1}{p}} \right) < \infty.$$

When $w = 1$ we drop the subscription w.

The Hardy-Littlewood maximal function Mf is defined, for a local integrable function f, by

\[(1.1) \quad Mf(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_{Q} |f(y)| dy,\]

where the supremum is taken over all cubes containing x.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
A nonnegative locally integrable function \(w \) is said to be in the Muckenhoupt classes \(A_p \) if there exists a constant \(C_p > 0 \) such that for all cube \(Q \),

\[
\frac{1}{|Q|} \int_Q w \, dy \left(\frac{1}{|Q|} \int_Q w^{1-p'} \, dy \right)^{p-1} \leq C_p
\]

when \(1 < p < \infty \), \(\frac{1}{p} + \frac{1}{p'} = 1 \), as well as for \(p = 1 \),

\[
\frac{1}{|Q|} \int_Q w \, dy \leq C_1 w(x),
\]

for a.e. \(x \in Q \) or, equivalently, \(Mw(x) \leq C_1 w(x) \) for a.e. \(x \in \mathbb{R}^n \). We set \(A_{\infty} = \bigcup_{p \geq 1} A_p \).

It is well known that the classes \(A_p \) characterize the boundedness of the Hardy-Littlewood maximal operator on the weighted Lebesgue spaces (see [6], ch. IV). Namely,

\[
M : L^p(w) \rightarrow L^p(w)
\]

if and only if \(w \in A_p \) when \(1 < p < \infty \), and

\[
M : L^1(w) \rightarrow L^{1,\infty}(w)
\]

if and only if \(w \in A_1 \).

1.2. Weighted Lizorkin-Triebel space. We denote by \(S(\mathbb{R}^n) \) the space of Schwartz functions and by \(S_{\infty}(\mathbb{R}^n) \) the subspace of functions in \(S(\mathbb{R}^n) \) with all vanishing moments; i.e.,

\[
S_{\infty}(\mathbb{R}^n) = \left\{ \nu \in S : \int_{\mathbb{R}^n} x^\beta \nu(x) \, dx = 0, \ \forall \beta \in \mathbb{N}^n \right\}.
\]

The weighted homogeneous Lizorkin-Triebel space \(\dot{F}^{\gamma,q}_{p,w} \) can be characterized as follows (see for instance [3] or [7]). Let \(\gamma \in \mathbb{R}, \ 0 < p, q < \infty, \ 0 < \delta < \min(p,q) \) and \(w \in A_{p/\delta} \). Assume \(\nu \in S_{\infty}(\mathbb{R}^n) \). Then \(f \in \dot{F}^{\gamma,q}_{p,w} \) if and only if

\[
||f||_{\dot{F}^{\gamma,q}_{p,w}} = \left\| \left(\int_0^\infty t^{-\gamma q} (\nu_t \ast f)^q \, dt \right)^{\frac{1}{q}} \right\|_{p,w} < \infty,
\]

with the usual modification if \(p = \infty \). Here \(\nu_t(x) = t^{-n} \nu(\frac{x}{t}) \).

Remark 1.1. Note that

1. If \(I_\alpha \) denotes the Riesz potential defined by \(\hat{I}_\alpha f(\xi) = |\xi|^{-\alpha} \hat{f}(\xi), \ \alpha \in \mathbb{R} \), then we have the following lifting property of \(I_\alpha \):

\[
||I_\alpha f||_{\dot{F}^{\alpha+\gamma,q}_{p,w}} \approx ||f||_{\dot{F}^{\gamma,q}_{p,w}};
\]

2. If \(R_j, \ j = 1, \ldots, n \), denotes the Riesz transform defined by \(\hat{R}_j f(\xi) = i \xi_j |\xi|^{-1} \hat{f}(\xi) \), then

\[
||R_j f||_{\dot{F}^{\gamma,q}_{p,w}} \approx ||f||_{\dot{F}^{\gamma,q}_{p,w}};
\]

3. For a positive integer \(N \), \(f \in \dot{F}^{N,q}_{p,w} \) if and only if \(\partial^\sigma f \in \dot{F}^{0,q}_{p,w} \) for all \(\sigma \) such that \(|\sigma| = N \). Moreover,

\[
||f||_{\dot{F}^{N,q}_{p,w}} \approx \sum_{|\sigma|=N} ||\partial^\sigma f||_{\dot{F}^{0,q}_{p,w}}.
\]
Indeed, the first assertion follows from the fact that $I_\alpha \nu$ behaves as ν, $\nu \ast (I_\alpha f) = t^n (I_\alpha \nu) \ast f$ and $I_\alpha I_{-\alpha} = \text{id}$. The second assertion can be obtained from the identity $\nu \ast (R_j f) = (R_j \nu) \ast f$. Finally the identity

$$\partial^\alpha = (-1)^{[\alpha]} R^\alpha \circ I_{-[\alpha]}, \quad R = (R_1, \ldots, R_n),$$

yields the third assertion.

One should also note (see [5][10]) that

Theorem 1.1. Assume $\beta \in \mathbb{R}$, $0 < p$, $d < \infty$, and $0 < q$, $r \leq \infty$. Let $\gamma \in \mathbb{R}$ with $0 < \alpha - \gamma + \beta$ and $w \in A_\infty$. If $w(B(x,t)) \geq Ct^d$ for all $0 < t < \infty$ and all x, then

$$\|I_\alpha f\|_{F^{\gamma,q}_{p,w}} \leq C\|f\|_{\dot{F}^{\beta,q}_{p,w}},$$

where p_\ast is determined by

$$\frac{1}{p_\ast} = \frac{1}{p} - \frac{\alpha - \gamma + \beta}{d}.$$

In particular, we have

Theorem 1.2 ([4][5][10]). Assume any reals α, γ s.t. $0 < \alpha - \gamma$; $0 < p < \infty$, $0 < q$, $r \leq \infty$ and $d > 0$. Let $w \in A_\infty$ and $0 < p_\ast \leq \infty$ with

$$\frac{1}{p_\ast} = \frac{1}{p} - \frac{\alpha - \gamma}{d}.$$

If $w(B(x,t)) \geq Ct^d$ for all $0 < t < \infty$ and all x, then

$$\dot{F}^{\alpha,q}_{p,w} \subset \bigcap_{r>0} \dot{F}^{\gamma,r}_{p_\ast,w},$$

with the continuous imbedding $\dot{F}^{\alpha,q}_{p,w} \hookrightarrow \dot{F}^{\gamma,r}_{p_\ast,w}$, for each $0 < r \leq \infty$.

Remark 1.2. Such weights in Theorem 1.1 and Theorem 1.2 exist. For instance, the function

$$w(x) = |x|^\alpha \log^\beta(2 + |x|^{-1})$$

is in A_p, if $-n < \alpha < n(p-1)$ and $\beta \in \mathbb{R}$; see for example [8]. Moreover, w satisfies $w(B(x,t)) \geq Ct^{n+\alpha}$ for all $0 < t < \infty$ and all x whenever $0 \leq \alpha < n(p-1)$ and $\beta \geq 0$.

Another interesting example given in [8] is

$$w(x) = \begin{cases} |x|^\alpha & \text{if } |x| \leq 1, \\ |x|^\beta & \text{if } |x| > 1, \end{cases}$$

which belongs to A_p, $1 < p < \infty$, whenever $-n < \alpha$ and $\beta < n(p-1)$. If, in addition, $-n < \alpha \leq 0$ and $0 \leq \beta < n(p-1)$, then $w(B(x,t)) \geq Ct^n$ for all $0 < t < \infty$ and all x.

2. Weighted estimates for L_1-vector fields

In this section we assume that $w \in A_p(\mathbb{R} \times \mathbb{R}^{n-1})$; i.e., there exists a constant $C > 0$ such that for every interval $I \subset \mathbb{R}$ and every cube $Q \subset \mathbb{R}^{n-1}$,

$$(2.1) \quad \frac{1}{|I \times Q|} \int_{I \times Q} wdy \left(\frac{1}{|I \times Q|} \int_{I \times Q} w^{1-p'} dy \right)^{p-1} \leq C, \quad 1 < p < \infty.$$

We denote by Q_t a cube with radius $t > 0$ and by I_r an interval with radius $r > 0$.
Theorem 2.1. Let \(d \geq n \) and \(w \in A_d(\mathbb{R} \times \mathbb{R}^{n-1}) \). Assume that
\[
\int_{I_r \times Q_t} wd y \geq Cr^{d-1}, \quad \forall r, \ t > 0.
\]
Then there exists a constant \(C \) such that for each \(f, g \in C^\infty_c(\mathbb{R}, \mathbb{R}^n) \),
\[
\left| \int_{\mathbb{R}^n} f g dx \right| \leq C \left(\| \text{div} f \|_{L_1} \| g \|_{L_d(w)} + \| f \|_{L_1} \| \nabla g \|_{L_d(w)} \right).
\]

To prove Theorem 2.1 we need the following lemma.

Lemma 2.1. Let \(w \in A_p(\mathbb{R}^m) \), \(d \geq m + 1 \) and assume that \(w(B(x, t)) \geq Ct^{d-1} \) for each \(x \in \mathbb{R}^m \) and each \(t > 0 \). Let \(g \in C^\infty_c(\mathbb{R}^m) \) and set
\[
g_1(x) = g(x) - \eta_\delta * g(x), \quad g_2(x) = \eta_\delta * g(x),
\]
where \(\eta \) is a smooth cut-off function supported in the unit ball with \(\int \eta(x) dx = 1 \) and \(\eta_\delta(x) = \delta^{-m} \eta(x/\delta), \ delta > 0 \). Then we have the following estimates:
\[
\| g_1 \|_{L_\infty} \leq C \delta^{\gamma} \| \nabla g \|_{L_p(w)},
\]
\[
\| g_2 \|_{L_\infty} \leq C \delta^{\gamma - 1} \| g \|_{L_p(w)},
\]
\[
\| \nabla g_2 \|_{L_\infty} \leq C \delta^{\gamma - 1} \| \nabla g \|_{L_p(w)},
\]
with \(\gamma = 1 - \frac{d-1}{p} \) provided that \(p > d - 1 \).

Proof. We only prove the estimation (2.4). The proof of (2.5) or (2.6) is similar. We have
\[
|g_1(x)| = \delta^{-m} \left| \int \eta(x - y/\delta) (g(x) - g(y)) dy \right| \leq C \int_{B(x, \delta)} |\nabla g(y)| |x - y|^{-m+1} dy.
\]
Using Hölder’s inequality we get
\[
|g_1(x)| \leq C \left(\int_{B(x, \delta)} |\nabla g(y)|^p w(y) dy \right)^{1/p} \left(\int_{B(x, \delta)} |x - y|^{-(m+1)p'} w^{-p'/p} dy \right)^{1/p'}.
\]
On the other hand, we have
\[
\int_{B(x, \delta)} |x - y|^{-(m+1)p'} w^{-p'/p} dy
\]
\[
\leq \sum_{k \geq 0} (2^{-k} \delta)^{-(m+1)p'} \int_{B(x, 2^{-k} \delta)} w^{-p'/p} dy
\]
\[
\leq \sum_{k \geq 0} (2^{-k} \delta)^{-(m+1)p'} (2^{-k} \delta)^{mp'} \left(\int_{B(x, 2^{-k} \delta)} w dy \right)^{-\frac{1}{p'}}
\]
\[
\leq \sum_{k \geq 0} (2^{-k} \delta)^{p\tau - p} (2^{-k} \delta)^{\frac{1-d}{p'}} \leq \delta^{\frac{p+1-d}{p'}}.
\]
Estimates (2.7) and (2.8) imply (2.4). \(\square \)

Remark 2.1. An alternative proof of (2.4) is to use a weighted version of Theorem IX.12 in [2]. Indeed, one can adapt the argument given in [2] to prove that
\[
|g(x) - g(y)| \leq C |x - y|^{\gamma} \| \nabla g(y) \|_{L_p(w)}, \quad \text{for all } x, y \in \mathbb{R}^m.
\]
This leads immediately to the estimate (2.4).
Proof of Theorem 2.1 We follow the argument in Van Schaftingen [12]. Without loss of generality we may assume that $g \in C_c^\infty(\mathbb{R}^n, \mathbb{R})$.

Note first that if w satisfies (2.1) and (2.2) with $p = d$, then Lebesgue’s Differentiation Theorem implies that for almost every $x_1 \in \mathbb{R}$ and every cube $Q_t \subset \mathbb{R}^{n-1}$,

$$
\frac{1}{|Q_t|} \int_{Q_t} w(x_1, x') dx' \left(\frac{1}{|Q_t|} \int_{Q_t} w^{1-p'}(x_1, x') dx' \right)^{p-1} \leq C
$$

and

$$
\int_{Q_t} w(x_1, x') dx' \geq C t^{d-1}.
$$

Fix $x_1 \in \mathbb{R}$ and let η be as in Lemma 2.1 with $m = n - 1$ and let $\delta = \delta(x_1) > 0$ be chosen later.

Set

$$
g_{1,x_1}(x') = g_{x_1}(x') - \eta \delta * g_{x_1}(x'),
g_{2,x_1}(x') = \eta \delta * g_{x_1}(x'),
$$

and

$$
J(x_1) = \int_{\mathbb{R}^{n-1}} f_1(x_1, x') g_{x_1}(x') dx',
$$

with $x' = (x_2, \ldots, x_n)$ and $g_{x_1}(x') = g(x_1, x')$. Using the decomposition in Lemma 2.1 we get

$$
J(x_1) = J_1(x_1) + J_2(x_1),
$$

with

$$
J_1(x_1) = \int_{\mathbb{R}^{n-1}} f_1(x_1, x') g_{1,x_1}(x')
$$

and

$$
J_2(x_1) = \int_{\mathbb{R}^{n-1}} f_1(x_1, x') g_{2,x_1}(x').
$$

From (2.4) we have

$$
|J_1(x_1)| \leq C \delta^\gamma ||\nabla g_{x_1}||_{L_p(w(x_1, \ldots))} ||f(x_1, \ldots)||_{L_1}.
$$

On the other hand,

$$
J_2(x_1) = \int_{\mathbb{R}^{n-1}} \int_{-\infty}^{x_1} \frac{\partial f_1}{\partial t}(t, x') g_{2,x_1}(x') dt dx' \\
= \int_{\mathbb{R}^{n-1}} \int_{-\infty}^{x_1} \text{div} f(t, x') g_{2,x_1}(x') dt dx' - \sum_{j=2}^n \int_{\mathbb{R}^{n-1}} \int_{-\infty}^{x_1} \frac{\partial f_j}{\partial x_j}(t, x') g_{2,x_1}(x') dt dx' \\
= \int_{-\infty}^{x_1} \int_{\mathbb{R}^{n-1}} \text{div} f(t, x') g_{2,x_1}(x') dx' dt \\
+ \sum_{j=2}^n \int_{-\infty}^{x_1} \int_{\mathbb{R}^{n-1}} f_j(t, s) \frac{\partial g_{2,x_1}}{\partial x_j}(x') dx' dt.
$$

Using the estimates (2.5) and (2.6) and the last identity we obtain

$$
|J_2(x_1)| \leq C \delta^\gamma \left(||\text{div} f||_{L_1} ||g_{x_1}||_{L_p(w(x_1, \ldots))} + ||f||_{L_1} ||\nabla g_{x_1}||_{L_p(w(x_1, \ldots))} \right).
$$
Estimates (2.10) and (2.11) lead to
\[
|J(x_1)| \leq \delta^{|\gamma|} \| \nabla g_{x_1} \|_{L_p(w(x_1,\ldots))} \| f(x_1,\ldots) \|_{L_1}
\]
(2.11) \quad + \delta^{-1} \left(\| \text{div} f \|_{L_1} \| g_{x_1} \|_{L_p(w(x_1,\ldots))} + \| f \|_{L_1} \| \nabla g_{x_1} \|_{L_p(w(x_1,\ldots))} \right).
Assume \| \nabla g_{x_1} \|_{L_p(w(x_1,\ldots))} \| f(x_1,\ldots) \|_{L_1} \neq 0 \text{ and choose } \delta \text{ so that}
\delta^{|\gamma|} \| \nabla g_{x_1} \|_{L_p(w(x_1,\ldots))} \| f(x_1,\ldots) \|_{L_1} = \delta^{-1} \left(\| \text{div} f \|_{L_1} \| g_{x_1} \|_{L_p(w(x_1,\ldots))} + \| f \|_{L_1} \| \nabla g_{x_1} \|_{L_p(w(x_1,\ldots))} \right).
That is,
\[
\delta = \frac{\| \text{div} f \|_{L_1} \| g_{x_1} \|_{L_p(w(x_1,\ldots))} + \| f \|_{L_1} \| \nabla g_{x_1} \|_{L_p(w(x_1,\ldots))}}{\| \nabla g_{x_1} \|_{L_p(w(x_1,\ldots))} \| f(x_1,\ldots) \|_{L_1}}.
\]

It follows from (2.11) and (2.12) that
\[
\int \limits_{\mathbb{R}} |J(x_1)| \, dx_1 \leq \int \limits_{\mathbb{R}} \left(\| \nabla g_{x_1} \|_{L_p(w(x_1,\ldots))} \| f(x_1,\ldots) \|_{L_1} \right)^{1-1/p} \times \left(\| \text{div} f \|_{L_1} \| g_{x_1} \|_{L_p(w(x_1,\ldots))} + \| f \|_{L_1} \| \nabla g_{x_1} \|_{L_p(w(x_1,\ldots))} \right)^{1/p} \, dx_1.
\]
If \| \nabla g_{x_1} \|_{L_p(w(x_1,\ldots))} \| f(x_1,\ldots) \|_{L_1} = 0, \text{ the inequality is trivially true. Otherwise, if we use Hölder’s inequality twice, we get}
\[
\int \limits_{\mathbb{R}} |J(x_1)| \, dx_1 \leq \left(\int \limits_{\mathbb{R}} \left(\| \nabla g_{x_1} \|_{L_p(w(x_1,\ldots))} \| f(x_1,\ldots) \|_{L_1} \right)^{\frac{p}{p+1}} \right)^{\frac{p+1}{p}} \times \left(\int \limits_{\mathbb{R}} \left(\| \text{div} f \|_{L_1} \| g_{x_1} \|_{L_p(w(x_1,\ldots))} + \| f \|_{L_1} \| \nabla g_{x_1} \|_{L_p(w(x_1,\ldots))} \right)^{\frac{p}{p}} \, dx_1 \right)^{\frac{p}{p+1}}
\leq \left(\| \nabla g \|_{L_p(w)} \| f \|_{L_1} \right)^{\frac{p-1}{p}} \| \text{div} f \|_{L_1} \| g \|_{L_p(w)} + \| f \|_{L_1} \| \nabla g \|_{L_p(w)} \right)^{\frac{1}{p}}
\leq \| \text{div} f \|_{L_1} \| g \|_{L_p(w)} + \| f \|_{L_1} \| \nabla g \|_{L_p(w)}.
\]

Corollary 2.1. Let \(d \) and \(w \) be as in Theorem 2.1. Then, for every \(s \geq 1, \ r > 0 \) and \(q > 0 \) with \(sr = d \), there exists \(C > 0 \) such that for every \(f, g \in C_c^\infty(\mathbb{R}^n, \mathbb{R}^n) \), if \(\text{div} f = 0 \), then
\[
\left| \int_{\mathbb{R}^n} f \, g \, dx \right| \leq C \| f \|_{L_1} \| g \|_{\dot{F}^{s,q}_{r,w}}.
\]

Proof. Theorem 2.1 and Theorem 1.2 lead to
\[
\left| \int_{\mathbb{R}^n} f \, g \, dx \right| \leq \| f \|_{L_1} \| \nabla g \|_{\dot{F}^{0,2}_{d,w}} \simeq \| f \|_{L_1} \| g \|_{\dot{F}^{1,2}_{d,w}} \leq \| f \|_{L_1} \| g \|_{\dot{F}^{s,q}_{r,w}}.
\]

2.1. Extension of Sobolev-Gagliardo-Nirenberg inequality to differential forms. To simplify notation, we denote also by \(\dot{F}^{\gamma,q}_{p,w} \), the space of differential forms with coefficients in \(\dot{F}^{\gamma,q}_{p,w} \).

Theorem 2.2. Let \(0 < p < \infty \) and \(w \in A_\infty \). Then we have
\[
\| \partial_j f \|_{\dot{F}^{\gamma,q}_{p,w}} \leq \| df \|_{\dot{F}^{\gamma,q}_{p,w}} + \| \delta f \|_{\dot{F}^{\gamma,q}_{p,w}}.
\]

Proof. We have
\[
\partial_j f \ast \nu_t \simeq t^{-1} f \ast (\partial_j \nu)_t
\]
so that
\[
\| \partial_j f \|_{\dot{F}^{\gamma,q}_{p,w}} \simeq \| f \|_{\dot{F}^{\gamma+1,q}_{p,w}}.
\]
Define the Riesz transform in $S_0'((\mathbb{R}^n, \Lambda))$ by
\[\mathcal{R} = d \circ I_1 = I_1 \circ d \]
and its adjoint by
\[\mathcal{R}^* = \delta \circ I_1 = I_1 \circ \delta, \]
where $S_0'((\mathbb{R}^n, \Lambda))$ is the dual space of $S_0((\mathbb{R}^n, \Lambda))$. It can be seen from (2.13) and the lifting property of I_1 that \mathcal{R} and \mathcal{R}^* are bounded on $F^{\gamma,q}_{p,w}$. Now the following identity
\[\partial_j = R_j \circ \mathcal{R} \circ \delta + R_j \circ \mathcal{R}^* \circ d \]
iimplies what we want to prove. \hfill \square

Corollary 2.2. Let $0 < p < \infty$, $\gamma, \beta \in \mathbb{R}$ and $w \in A_\infty$ satisfying for some $d \geq n$, $w(B(x,t)) \geq C t^d$ for all x and all $t > 0$. Then
\[\|f\|_{F^{\gamma,q}_{p,w}} \leq \|df\|_{F^{\beta,q}_{p,w}} + \|\delta f\|_{F^{\beta,q}_{p,w}}, \]
with $\frac{1}{p_*} = \frac{1}{p} - \frac{1-\gamma+\beta}{d}$.

Proof. Theorem 1.1 and Theorem 2.2 imply
\[\|f\|_{F^{\gamma,q}_{p,w}} \simeq \|R_j f\|_{F^{\gamma,q}_{p,w}} \simeq \|I_1(\partial_j f)\|_{F^{\gamma,q}_{p,w}} \lesssim \|\partial_j f\|_{F^{\beta,q}_{p,w}} \lesssim \|df\|_{F^{\beta,q}_{p,w}} + \|\delta f\|_{F^{\beta,q}_{p,w}}. \]
\hfill \square

Proof of Theorem 1.1 We have
\[\langle f, g \rangle = \langle f, (d \circ \delta \circ I_2 + \delta \circ d \circ I_2)g \rangle = \langle \delta f, \delta \circ I_2g \rangle + \langle df, d \circ I_2g \rangle = \langle \delta f, I_1 \circ \mathcal{R}^*g \rangle + \langle df, I_1 \circ \mathcal{R}g \rangle. \]

Then, by applying Theorem 2.2 and arguing as in [2] we obtain
\[\|\langle f, g \rangle\| \lesssim \|\delta f\|_{L^1} + \|df\|_{L^1} \left(\|\nabla \circ I_1 \circ \mathcal{R}^*g\|_{L^d(w)} + \|\nabla \circ I_1 \circ \mathcal{R}g\|_{L^d(w)} \right) \lesssim \|\delta f\|_{L^1} + \|df\|_{L^1} \|g\|_{L^d(w)}. \]

Using the dual argument we finish the proof. \hfill \square

Acknowledgements

The author is grateful to Professors Jean-Pierre Gossez and Jean Van Schaftingen for their comments and discussions.

References

DÉPARTEMENT DE MATHEMATIQUE, RESEARCH CENTER E. BERNHEIM SOLVAY BUSINESS SCHOOL, UNIVERSITÉ LIBRE DE BRUXELLES, AV. F. D. ROOSEVELT 21, CP 135/01, B-1050 BRUXELLES, BELGIUM

E-mail address: hloulit@ulb.ac.be