One-box conditions for Carleson measures for the Dirichlet space
HTML articles powered by AMS MathViewer
- by Omar El-Fallah, Karim Kellay, Javad Mashreghi and Thomas Ransford
- Proc. Amer. Math. Soc. 143 (2015), 679-684
- DOI: https://doi.org/10.1090/S0002-9939-2014-12248-9
- Published electronically: September 18, 2014
- PDF | Request permission
Abstract:
We give a simple proof of the fact that a finite measure $\mu$ on the unit disk is a Carleson measure for the Dirichlet space if it satisfies the Carleson one-box condition $\mu (S(I))=O(\phi (|I|))$, where $\phi :(0,2\pi ]\to (0,\infty )$ is an increasing function such that $\int _0^{2\pi }(\phi (x)/x) dx<\infty$. We further show that the integral condition on $\phi$ is sharp.References
- Nicola Arcozzi, Richard Rochberg, and Eric Sawyer, Carleson measures for analytic Besov spaces, Rev. Mat. Iberoamericana 18 (2002), no. 2, 443–510. MR 1949836, DOI 10.4171/RMI/326
- N. Arcozzi, R. Rochberg, and E. Sawyer, Carleson measures for the Drury-Arveson Hardy space and other Besov-Sobolev spaces on complex balls, Adv. Math. 218 (2008), no. 4, 1107–1180. MR 2419381, DOI 10.1016/j.aim.2008.03.001
- Nicola Arcozzi, Richard Rochberg, Eric T. Sawyer, and Brett D. Wick, The Dirichlet space: a survey, New York J. Math. 17A (2011), 45–86. MR 2782728
- C. Bishop, Interpolating sequences for the Dirichlet space and its multipliers, preprint, 1994.
- Bjarte Bøe, An interpolation theorem for Hilbert spaces with Nevanlinna-Pick kernel, Proc. Amer. Math. Soc. 133 (2005), no. 7, 2077–2081. MR 2137874, DOI 10.1090/S0002-9939-05-07722-1
- Lennart Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547–559. MR 141789, DOI 10.2307/1970375
- Lennart Carleson, Selected problems on exceptional sets, Van Nostrand Mathematical Studies, No. 13, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0225986
- Ron Kerman and Eric Sawyer, Carleson measures and multipliers of Dirichlet-type spaces, Trans. Amer. Math. Soc. 309 (1988), no. 1, 87–98. MR 957062, DOI 10.1090/S0002-9947-1988-0957062-1
- D. Marshall and C. Sundberg, Interpolating sequences for the multipliers of the Dirichlet space, preprint, 1989.
- Kristian Seip, Interpolation and sampling in spaces of analytic functions, University Lecture Series, vol. 33, American Mathematical Society, Providence, RI, 2004. MR 2040080, DOI 10.1090/ulect/033
- David A. Stegenga, Multipliers of the Dirichlet space, Illinois J. Math. 24 (1980), no. 1, 113–139. MR 550655
- Andrew Wynn, Sufficient conditions for weighted admissibility of operators with applications to Carleson measures and multipliers, Q. J. Math. 62 (2011), no. 3, 747–770. MR 2825481, DOI 10.1093/qmath/haq007
Bibliographic Information
- Omar El-Fallah
- Affiliation: Laboratoire Analyse et Applications (CNRST URAC03), Université Mohamed V, B. P. 1014 Rabat, Morocco
- MR Author ID: 338521
- Email: elfallah@fsr.ac.ma
- Karim Kellay
- Affiliation: IMB, Université Bordeaux 1, 351 cours de la Libération, F-33405 Talence cedex, France
- Email: karim.kellay@math.u-bordeaux1.fr
- Javad Mashreghi
- Affiliation: Département de mathématiques et de statistique, Université Laval, Québec, Canada G1V 0A6
- MR Author ID: 679575
- Email: javad.mashreghi@mat.ulaval.ca
- Thomas Ransford
- Affiliation: Département de mathématiques et de statistique, Université Laval, Québec, Canada G1V 0A6
- MR Author ID: 204108
- Email: ransford@mat.ulaval.ca
- Received by editor(s): February 15, 2013
- Received by editor(s) in revised form: April 30, 2013
- Published electronically: September 18, 2014
- Additional Notes: The first author was supported by Académie Hassan II des sciences et techniques
The second author was supported by PICS-CNRS
The third author was supported by NSERC
The fourth author was supported by NSERC and the Canada research chairs program - Communicated by: Pamela B. Gorkin
- © Copyright 2014 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 679-684
- MSC (2010): Primary 31C25; Secondary 28C99
- DOI: https://doi.org/10.1090/S0002-9939-2014-12248-9
- MathSciNet review: 3283654