## Critical points of random polynomials with independent identically distributed roots

HTML articles powered by AMS MathViewer

- by Zakhar Kabluchko PDF
- Proc. Amer. Math. Soc.
**143**(2015), 695-702 Request permission

## Abstract:

Let $X_1,X_2,\ldots$ be independent identically distributed random variables with values in $\mathbb {C}$. Denote by $\mu$ the probability distribution of $X_1$. Consider a random polynomial $P_n(z)=(z-X_1)\ldots (z-X_n)$. We prove a conjecture of Pemantle and Rivin [in: I. Kotsireas and E. V. Zima, eds.,*Advances in Combinatorics*, Waterloo Workshop in Computer Algebra, $2011$] that the empirical measure \[ \mu _n:=\frac 1{n-1}\sum _{P_n’(z)=0} \delta _z\] counting the complex zeros of the derivative $P_n’$ converges in probability to $\mu$, as $n\to \infty$.

## References

- B. Derrida,
*The zeroes of the partition function of the random energy model*, Phys. A**177**(1991), no. 1-3, 31–37. Current problems in statistical mechanics (Washington, DC, 1991). MR**1137017**, DOI 10.1016/0378-4371(91)90130-5 - I. M. Gel′fand and G. E. Shilov,
*Generalized functions. Vol. 1*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1964 [1977]. Properties and operations; Translated from the Russian by Eugene Saletan. MR**0435831** - J. Ben Hough, Manjunath Krishnapur, Yuval Peres, and Bálint Virág,
*Zeros of Gaussian analytic functions and determinantal point processes*, University Lecture Series, vol. 51, American Mathematical Society, Providence, RI, 2009. MR**2552864**, DOI 10.1090/ulect/051 - Zakhar Kabluchko and Anton Klimovsky,
*Complex random energy model: zeros and fluctuations*, Probab. Theory Related Fields**158**(2014), no. 1-2, 159–196. MR**3152783**, DOI 10.1007/s00440-013-0480-5 - Z. Kabluchko and D. Zaporozhets,
*Asymptotic distribution of complex zeros of random analytic functions*, Ann. Probab., to appear, 2012. Preprint available at http://arxiv.org/abs/1205.5355. - Olav Kallenberg,
*Foundations of modern probability*, Probability and its Applications (New York), Springer-Verlag, New York, 1997. MR**1464694** - A. I. Markushevich,
*Theory of functions of a complex variable. Vol. II*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. Revised English edition translated and edited by Richard A. Silverman. MR**0181738** - R. Pemantle and I. Rivin,
*Advances in Combinatorics. Waterloo Workshop in Computer Algebra 2011,*The distribution of zeros of the derivative of a random polynomial. In I. Kotsireas and E. V. Zima, editors, Springer, New York, 2013. Preprint available at http://arxiv.org/abs/1109.5975. - Valentin V. Petrov,
*Limit theorems of probability theory*, Oxford Studies in Probability, vol. 4, The Clarendon Press, Oxford University Press, New York, 1995. Sequences of independent random variables; Oxford Science Publications. MR**1353441** - Q. I. Rahman and G. Schmeisser,
*Analytic theory of polynomials*, London Mathematical Society Monographs. New Series, vol. 26, The Clarendon Press, Oxford University Press, Oxford, 2002. MR**1954841** - Sneha Dey Subramanian,
*On the distribution of critical points of a polynomial*, Electron. Commun. Probab.**17**(2012), no. 37, 9. MR**2970701**, DOI 10.1214/ECP.v17-2040 - Terence Tao and Van Vu,
*Random matrices: universality of ESDs and the circular law*, Ann. Probab.**38**(2010), no. 5, 2023–2065. With an appendix by Manjunath Krishnapur. MR**2722794**, DOI 10.1214/10-AOP534

## Additional Information

**Zakhar Kabluchko**- Affiliation: Institute of Stochastics, Ulm University, Helmholtzstr. 18, 89069 Ulm, Germany
- MR Author ID: 696619
- ORCID: 0000-0001-8483-3373
- Email: zakhar.kabluchko@uni-ulm.de
- Received by editor(s): July 4, 2012
- Received by editor(s) in revised form: February 12, 2013, and May 3, 2013
- Published electronically: September 19, 2014
- Communicated by: David Levin
- © Copyright 2014
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**143**(2015), 695-702 - MSC (2010): Primary 30C15; Secondary 60G57, 60B10
- DOI: https://doi.org/10.1090/S0002-9939-2014-12258-1
- MathSciNet review: 3283656