## Signatures, Heegaard Floer correction terms and quasi–alternating links

HTML articles powered by AMS MathViewer

- by Paolo Lisca and Brendan Owens PDF
- Proc. Amer. Math. Soc.
**143**(2015), 907-914 Request permission

## Abstract:

Turaev showed that there is a well–defined map assigning to an oriented link $L$ in the three–sphere a Spin structure $\mathbf {t}_0$ on $\Sigma (L)$, the two–fold cover of $S^3$ branched along $L$. We prove, generalizing results of Manolescu–Owens and Donald–Owens, that for an oriented quasi–alternating link $L$ the signature of $L$ equals minus four times the Heegaard Floer correction term of $(\Sigma (L), \mathbf {t}_0)$.## References

- Abhijit Champanerkar and Ilya Kofman,
*Twisting quasi-alternating links*, Proc. Amer. Math. Soc.**137**(2009), no. 7, 2451–2458. MR**2495282**, DOI 10.1090/S0002-9939-09-09876-1 - A. Champanerkar and P. Ording,
*A note on quasi-alternating Montesinos links*, arXiv preprint 1205.5261. - Andrew Donald and Brendan Owens,
*Concordance groups of links*, Algebr. Geom. Topol.**12**(2012), no. 4, 2069–2093. MR**3020201**, DOI 10.2140/agt.2012.12.2069 - Joshua Greene,
*Homologically thin, non-quasi-alternating links*, Math. Res. Lett.**17**(2010), no. 1, 39–49. MR**2592726**, DOI 10.4310/MRL.2010.v17.n1.a4 - Joshua Evan Greene and Liam Watson,
*Turaev torsion, definite 4-manifolds, and quasi-alternating knots*, Bull. Lond. Math. Soc.**45**(2013), no. 5, 962–972. MR**3104988**, DOI 10.1112/blms/bds096 - S. Jablan and R. Sazdanović,
*Quasi-alternating links and odd homology: computations and conjectures*, arXiv preprint 0901.0075. - Robion C. Kirby,
*The topology of $4$-manifolds*, Lecture Notes in Mathematics, vol. 1374, Springer-Verlag, Berlin, 1989. MR**1001966**, DOI 10.1007/BFb0089031 - W. B. Raymond Lickorish,
*An introduction to knot theory*, Graduate Texts in Mathematics, vol. 175, Springer-Verlag, New York, 1997. MR**1472978**, DOI 10.1007/978-1-4612-0691-0 - Paolo Lisca and András I. Stipsicz,
*Ozsváth-Szabó invariants and tight contact three-manifolds. II*, J. Differential Geom.**75**(2007), no. 1, 109–141. MR**2282726** - C. Manolescu and B. Owens,
*A concordance invariant from the Floer homology of double branched covers*, International Mathematics Research Notices**2007**(2007), no. 20, Art. ID rnm077. - Ciprian Manolescu and Peter Ozsváth,
*On the Khovanov and knot Floer homologies of quasi-alternating links*, Proceedings of Gökova Geometry-Topology Conference 2007, Gökova Geometry/Topology Conference (GGT), Gökova, 2008, pp. 60–81. MR**2509750** - David Mullins,
*The generalized Casson invariant for $2$-fold branched covers of $S^3$ and the Jones polynomial*, Topology**32**(1993), no. 2, 419–438. MR**1217078**, DOI 10.1016/0040-9383(93)90029-U - Peter Ozsváth and Zoltán Szabó,
*Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary*, Adv. Math.**173**(2003), no. 2, 179–261. MR**1957829**, DOI 10.1016/S0001-8708(02)00030-0 - Peter Ozsváth and Zoltán Szabó,
*On the Heegaard Floer homology of branched double-covers*, Advances in Mathematics**194**(2005), no. 1, 1–33. - Peter Ozsváth and Zoltán Szabó,
*Holomorphic triangles and invariants for smooth four-manifolds*, Adv. Math.**202**(2006), no. 2, 326–400. MR**2222356**, DOI 10.1016/j.aim.2005.03.014 - K. Qazaqzeh, N. Chbili, and B. Qublan,
*Characterization of quasi-alternating Montesinos links*, arXiv preprint 1205.4650. - K. Qazaqzeh, B. Qublan, and A. Jaradat,
*A new property of quasi-alternating links*, arXiv preprint 1205.4291. - R. Rustamov,
*Surgery formula for the renormalized Euler characteristic of Heegaard Floer homology*, arXiv preprint math/0409294. - Nikolai Saveliev,
*A surgery formula for the $\overline \mu$-invariant*, Topology Appl.**106**(2000), no. 1, 91–102. MR**1769335**, DOI 10.1016/S0166-8641(99)00075-9 - András I. Stipsicz,
*On the $\overline \mu$-invariant of rational surface singularities*, Proc. Amer. Math. Soc.**136**(2008), no. 11, 3815–3823. MR**2425720**, DOI 10.1090/S0002-9939-08-09439-2 - V. G. Turaev,
*Classification of oriented Montesinos links via spin structures*, Topology and geometry—Rohlin Seminar, Lecture Notes in Math., vol. 1346, Springer, Berlin, 1988, pp. 271–289. MR**970080**, DOI 10.1007/BFb0082779 - Liam Watson,
*A surgical perspective on quasi-alternating links*, Low-dimensional and symplectic topology, Proc. Sympos. Pure Math., vol. 82, Amer. Math. Soc., Providence, RI, 2011, pp. 39–51. MR**2768652**, DOI 10.1090/pspum/082/2768652 - Tamara Widmer,
*Quasi-alternating Montesinos links*, J. Knot Theory Ramifications**18**(2009), no. 10, 1459–1469. MR**2583805**, DOI 10.1142/S0218216509007518

## Additional Information

**Paolo Lisca**- Affiliation: Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy
**Brendan Owens**- Affiliation: Department of Mathematics, University of Glasgow, University Gardens, Glasgow G12 8QW, United Kingdom
- Email: b.owens@maths.gla.ac.uk
- Received by editor(s): March 7, 2013
- Received by editor(s) in revised form: May 20, 2013
- Published electronically: October 17, 2014
- Additional Notes: The present work is part of the first author’s activities within CAST, a Research Network Program of the European Science Foundation, and the PRIN–MIUR research project 2010–2011 “Varietà reali e complesse: geometria, topologia e analisi armonica”.

The second author was supported in part by EPSRC grant EP/I033754/1. - Communicated by: Daniel Ruberman
- © Copyright 2014
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**143**(2015), 907-914 - MSC (2010): Primary 57M25, 57M27; Secondary 57Q60
- DOI: https://doi.org/10.1090/S0002-9939-2014-12265-9
- MathSciNet review: 3283677