MODULES OF HIGHER ORDER INVARIANTS

FRANK D. GROSSHANS AND SEBASTIAN WALCHER

(Communicated by Harm Derksen)

ABSTRACT. Let k be an algebraically closed field of characteristic $p \geq 0$. Let A be a commutative k-algebra with multiplicative identity and let M be an A-module. Let G be a linear algebraic group acting rationally on both A and M. In this paper we study A^G-modules of nth order invariants, $I_n(M, G)$. The $I_n(M, G)$ are defined inductively by $I_0(M, G) = \{0\}$ and $I_n(M, G) = \{m \in M : g \cdot m - m \in I_{n-1}(M, G) \text{ for all } g \in G\}$. We show that some fundamental problems concerning these modules can be reduced to the case $I_n(k[G], G)$ where G acts on itself by right translation. We study the questions as to when $I_n(M, G)$ is a finitely generated A^G-module and how the $I_n(M, G)$ are related to equivariant mappings. For the classical case of G_a acting on binary forms, we describe the $I_n(M, G)$ and determine when they are Cohen-Macaulay.

1. INTRODUCTION

Let k be an algebraically closed field of characteristic $p \geq 0$. Let A be a commutative k-algebra with multiplicative identity and let M be an A-module. Let G be a linear algebraic group having identity e and suppose that G acts rationally on both A and M. In this paper we study A^G-modules of higher order invariants, $I_n(M, G)$. These modules first arose in our work on the reconstruction problem in ordinary differential equations [4]. Here, we study their algebraic properties. The $I_n(M, G)$ are defined in Section 2 where basic properties are proved and examples given. In Section 3, we show that some fundamental problems concerning these modules can be reduced to the case $I_n(k[G], G)$ where G acts on itself by right translation. For example, we show that when G is connected and reductive, $I_n(M, G) = M^G$. For arbitrary G, when is $I_n(M, G)$ a finitely generated A^G-module? This question is studied in Section 4 where it is shown that finite generation follows from the finite generation of A^G when $\text{char} k = 0$. For general G, we study the relation of this question to the finite generation ideal. The $I_n(M, G)$ are closely related to equivariant mappings. This relationship is studied in Section 5. In Section 6, we study the classical case of G_a acting on binary forms. We describe the $I_n(M, G)$ and determine when they are Cohen-Macaulay. Section 7 gives an overview of the applications to ordinary differential equations.

Received by the editors September 26, 2012 and, in revised form, May 22, 2013.
2010 Mathematics Subject Classification. Primary 13A50; Secondary 37C80.
Key words and phrases. Invariants, modules.
The authors thank the referee for a very careful reading of the manuscript and many helpful suggestions.

©2014 American Mathematical Society
2. Definition and basic properties

Let \(k \) be an algebraically closed field of characteristic \(p \geq 0 \). Let \(A \) be a commutative \(k \)-algebra with multiplicative identity and let \(M \) be an \(A \)-module. Let \(G \) be a linear algebraic group having identity \(e \) and let \(G^o \) be the irreducible component of \(e \) in \(G \). The group \(G \) acts on \(k[G] \) by left and right translation, denoted respectively by \(\ell_g \) and \(r_g \). Suppose that \(G \) acts rationally on both \(A \) and \(M \). These actions will be denoted by \((g,a) \rightarrow g \cdot a \) and \((g,m) \rightarrow g \cdot m \), respectively, for \(a \in A, m \in M \), and \(g \in G \). We shall also assume that the actions are compatible, that is, that \(g \cdot am = (g \cdot a)(g \cdot m) \). (When \(A = k \), we shall assume that the action of \(G \) is trivial.) We denote the identity mapping on \(M \) by \(I_M \). If \(f \in A \) is not nilpotent, we denote the localization of \(A \) at \(f \) by \(A_f \). Let \(X \) be an irreducible affine \(G \)-variety and let \(k[X] \) be the algebra of polynomial functions on \(X \). If \(f \in k[X] \), then \(X_f = \{ x \in X : f(x) \neq 0 \} \). It is known that \(k[X_f] = k[X]_f \).

Definition 1. Let \(I_0(M,G) = \{0\} \subset M \). For \(n \geq 1 \), let

\[I_n(M,G) = \{ m \in M : g \cdot m - m = I_{n-1}(M,G) \text{ for all } g \in G \}. \]

We shall call \(I_n(M,G) \) the module of \(n \)th order invariants.

Lemma 1. (a) \(I_1(M,G) = M^G = \{ m \in M : g \cdot m = m \text{ for all } g \in G \} \).

(b) \(I_n(M,G) \) is an \(A^G \)-module and a \(G \)-module.

(c) \(I_0(M,G) \subset I_1(M,G) \subset \ldots \subset I_n(M,G) \subset I_{n+1}(M,G) \subset \ldots \).

(d) \(I_n(M,G) = \{ m \in M : (g_1 - I_M) \ldots (g_n - I_M) \cdot m = 0 \text{ for all } g_1, \ldots, g_n \in G \} \).

(e) If \(\text{char} k = 0 \) and \(G \) is connected with Lie algebra \(\mathcal{L} \), then \(I_n(M,G) = \{ m \in M : L_{X_1} \cdots L_{X_n} \cdot m = 0 \text{ for all } L_{X_1}, \ldots, L_{X_n} \in \mathcal{L} \} \).

Proof. An element \(m \in M \) is in \(I_1(M,G) \) if and only if \(g \cdot m - m = I_0(M,G) = \{0\} \) for all \(g \in G \), that is, if and only if \(g \cdot m = m \). To prove the remaining properties, we proceed by induction, the cases \(n = 0, 1 \) always being immediate. So, suppose the properties hold for \(I_n(M,G) \), \(n \geq 1 \). For (b), let \(a \in A^G, m \in I_{n+1}(M,G) \), and \(g, a \in G \). We first show that \(am \in I_{n+1}(M,G) \). Indeed, \(g \cdot am - am = (g \cdot a)(g \cdot m) - am = a(g \cdot m - m) \). By the definition of \(I_{n+1}(M,G) \), \(g \cdot m - m \in I_n(M,G) \) which is an \(A^G \)-module by the induction hypothesis so \(a(g \cdot m - m) \in I_n(M,G) \). Next, we show that \(g \cdot m \in I_n(M,G) \). Indeed, \(g \cdot (g \cdot m) = (gg) \cdot (m - m) = (g \cdot m - m) \) and both terms are in \(I_n(M,G) \) by definition. For (c), suppose that \(I_{n-1}(M,G) \subset I_n(M,G) \) and let \(m \in I_n(M,G) \). Then, \(g \cdot m - m = I_{n-1}(M,G) \subset I_n(M,G) \) so \(m \in I_{n+1}(M,G) \). Property (d) follows immediately from induction and the definition of \(I_n(M,G) \). For (e), we recall that when \(\text{char} k = 0 \) and \(G \) is connected, then for any rational \(G \)-module \(V \) and \(v \in V, g \cdot v = v \) for all \(g \in G \) is equivalent to \(L_X \cdot v = 0 \) for all \(L_X \in \mathcal{L} \). Therefore, \(I_{n+1}(M,G) = \{ m \in M : L_X \cdot m \in I_n(M,G) \text{ for all } L_X \in \mathcal{L} \} \). \(\square \)

Example 1 (Unipotent groups). Let \(U \) be a unipotent group. Let \(V \) be a finite-dimensional \(U \)-module.

(a) If \(\dim V = n \), then \(V \subset I_n(V,U) \).

(b) \(M = \bigcup_{n \geq 1} I_n(M,U) \).

Proof. Let \(\{v_1, \ldots, v_n\} \) be a basis for \(V \) relative to which each element in \(U \) is upper triangular, i.e., if \(u \in U \), then \(uv_1 = v_1 \) and \(uv_i - v_i \in \langle v_1, \ldots, v_{i-1} \rangle \), the vector space spanned by \(\{v_1, \ldots, v_{i-1}\} \) for all \(i = 2, \ldots, n \). We show by induction that \(v_i \in I_i(V,U) \) for \(i = 1, \ldots, n \). Indeed, \(v_1 \in V^U = I_1(V,U) \). Now, suppose that
to the root $v_j \in I_j(V,U)$ for $j = 1, \ldots, i$. We show that $v_{i+1} \in I_{i+1}(V,U)$. Indeed, if $u \in U$, then $u v_{i+1} - v_{i+1} \in \langle v_1, \ldots, v_i \rangle$. By Lemma 1(c) and induction, $\langle v_1, \ldots, v_i \rangle$ is contained in $I_i(V,U)$. Then, by definition, $v_{i+1} \in I_{i+1}(V,U)$. Thus, for $i = 1, \ldots, n$, $v_i \in I_i(V,U) \subset I_n(V,U)$. This proves statement (a). Statement (b) follows from the fact that any $m \in M$ is contained in a finite-dimensional vector space invariant under the action of U.

\[\square\]

Example 2 ([4, Theorem 4, p. 1834] Maximal unipotent subgroups of reductive groups). Suppose that $char k = 0$. Let G be a connected reductive algebraic group. Let $B = TU$ be a Borel subgroup of G where U is the unipotent radical and T is a maximal torus in G which normalizes U. Let Φ (resp. Φ_+) be the set of roots of G (resp. U) with respect to T and let $\{\alpha_1, \ldots, \alpha_m\}$ be the corresponding fundamental root system in Φ_+. Let e_α be the T-weight vector in L corresponding to the root $\alpha \in \Phi$. Let V be a finite-dimensional irreducible representation of G having highest weight ω with respect to B and highest weight vector v_ω. We denote the endomorphism of V corresponding to the action of e_α by D_α. Then $I_{n+1}(V,U)$ is spanned over k by all elements of the form $D_{-\alpha_1} \cdots D_{-\alpha_r} v_\omega$ where $0 \leq r \leq n$.

Example 3 (Homomorphisms from G to G_a). Let G act on itself by right translation. Then $I_2(k[G],G) = \{f \in k[G] : f - f(e)\}$ is a homomorphism from G to G_a.

\[\text{Proof.}\] According to Lemma 1(d), $f \in I_2(k[G],G)$ if and only if $(g_1 - I_k[G])(g_2 - I_k[G])f = 0$ for any $g_1, g_2 \in G$. This is true if and only if for any $x \in G$, we have $f(x g_1 g_2) - f(x g_1) - f(x g_2) + f(x) = 0$. If $f \in I_2(k[G],G)$, we put $x = e$ and $f_1 = f - f(e)$; then, f_1 is a homomorphism from G to G_a. Conversely if $f_1 = f - f(e)$ is a homomorphism from G to G_a, then $(g_1 - I_k[G])(g_2 - I_k[G])f_1 = 0$ by the equation above so $f_1 \in I_2(k[G],G)$. Then $f = f_1 + f(e)$ is also in $I_2(k[G],G)$ since $f(e) \in k = I_1(k[G],G) \subset I_2(k[G],G)$.

\[\square\]

Example 4 (p-polynomials). Suppose that $char k = p > 0$. We identify G_a with \{ $u_b = (\begin{smallmatrix} 1 & b \\ 0 & 1 \end{smallmatrix}) : b \in k$ \} and $k[G_a]$ with $k[x]$ where $x(u_b) = b$. The group G_a acts on itself by right translation and $u_b(x) = x + b$. For $n = 1, 2, \ldots$, a basis over k of $I_n(k[G_a],G_a)$ is

\[\{x^{c_0 + c_1 p + c_2 p^2 + \cdots + c_N p^N} : 0 \leq c_i < p, \sum_{i=0}^{N} c_i \leq n - 1 \}.

\[\text{Proof.}\] We show first that $I_n(k[G_a],G_a)$ is spanned by certain x^d. Indeed, let $T = \{t_a = (\begin{smallmatrix} a & 0 \\ 0 & 1/a \end{smallmatrix}) : a \in k^* \}$. Since T normalizes G_a, T maps $k[G_a]$ to $k[G_a]$ and $I_n(k[G_a],G_a)$ to itself. Since $t_a x = x/a^2$, the weight vectors of T acting on $k[G_a]$ are the x^m, $m \geq 0$. The x^m have distinct T-weights so we need to determine which x^m are in $I_n(k[G_a],G_a)$. We proceed by induction the case $n = 1$ being immediate since $I_1(k[G_a],G_a) = k$. In general, suppose that the desired result holds for $I_{n-1}(k[G_a],G_a)$ and let $f = x^m \in I_n(k[G_a],G_a)$. We write m as
Example 5. When $\text{char} k = 0$, a basis over k of $I_n(k[G_a], G_a)$ consists of all the x^m, $m \leq n - 1$. This is proved by modifying the argument given in Example 4.

Example 6 (Cyclic groups of order p). Suppose that G is a cyclic group and let σ be a generator for G. We have (by induction and Lemma 1(b)) that for each $n = 1, 2, \ldots, I_n(M, G) = \{m \in M : (\sigma - I_M)^p m = 0\}$. In particular, suppose that $\text{char} k = p > 0$ and that $G = {c}$ is the cyclic group of order p. Then $I_p(M, G) = \{m \in M : (\sigma - I_M)^p m = 0\}$. But $(\sigma - I_M)^p = (\sigma^p - I_M) = (I_M - I_M) = 0$ so $I_p(M, G) = M$. In a similar way, it can be shown that $I_{p-1}(M, G) = \{m \in M : Tr_G m = 0\}$ using the combinatorial formula $(p^r - 1) \equiv (-1)^r \pmod{p}$. (Here, Tr_G is the transfer map.) For the special case when $M = k[G]$, we follow the notation introduced in Example 4 and identify G with the subgroup of G_a generated by u_1. Let $x = x|G$. Then $k[G]$ may be identified with polynomials in x of degree $\leq p - 1$. Reasoning as in Example 4, we may then prove that for $n \leq p$, a basis over k of $I_n(k[G], G)$ consists of all the x^m, $m \leq n - 1$. A direct calculation shows that the $I_n(k[G], G)$, $1 \leq n \leq p$, are the p-indecomposable representations of G [2] Lemma 7.1.1, p.105].

3. $I_n(M, G)$ AND $I_n(k[G], G)$

The action of G on M and on $k[G]$ by left translation gives an action on $k[G] \otimes M$. Let $\Phi : (k[G] \otimes M)^G \rightarrow M$ be defined by $\Phi(\sum_i f_i \otimes m_i) = \sum_i f_i(\sigma)m_i$. The Transfer Principle [3] Theorem 9.1, p.49] says that (a) Φ is a vector space isomorphism which is also an algebra isomorphism if M is a k-algebra; (b) if H is a subgroup of G acting on $k[G]$ by right translation, then Φ is an H-equivariant mapping; (c) in particular, Φ gives an isomorphism from $(k[G]^H \otimes M)^G$ to M^H. When H is a subgroup of G, we may consider the modules, $I_n(k[G], H)$ obtained by taking the action of H on $k[G]$ by right translation; G acts by left translation on $I_n(k[G], H)$.

Lemma 2. Let H be an algebraic subgroup of G and let M be a G-module. Let $v \in M$ and suppose that for each $g \in G$, we have $g \cdot v = \sum_{j=1}^N f_j(g)v_j$ where $\{v_1, \ldots, v_N\}$ is linearly independent over k. Then $v \in I_n(M, H)$ if and only if $f_j \in I_n(k[G], H)$ for each $j = 1, \ldots, N$.

\[c_0 + c_1p + c_2p^2 + \ldots + c_Np^N, \quad 0 \leq c_i < p \text{ for some non-negative integer } N. \]

Then, the highest power of x appearing in this expansion is $(c_i - 1)p^i + c_i p^j + c_i p^\ell + \ldots$. Since $r_{u_1}(x^m) = I_{n-1}(k[G_a], G_a)$, we see by induction that $(c_i - 1) + c_j + c_\ell + \ldots \leq n - 2$ so $c_i + c_j + c_\ell + \ldots \leq n - 1$ and m has the desired form. Conversely, if m has the desired form, the equation above shows that $r_{u_1}(x^m) = I_{n-1}(k[G_a], G_a)$. \[\square \]
Proof. We first note that for any \(g \in G, h \in H \), we have
\[
g \cdot (h \cdot v - v) = \sum_{j=1}^{N} (f_j(gh) - f_j(g))v_j = \sum_{j=1}^{N} ((h \cdot f_j)(g) - f_j(g))v_j.
\]
The proof now proceeds by induction, the case \(n = 0 \) being immediate. So, suppose the statement is true for \(n - 1 \); we shall show it holds for \(n \). Now, \(v \in I_n(M, H) \)
if and only if for each \(h \in H \), we have \(h \cdot v - v \in I_{n-1}(M, H) \). By the induction hypothesis and equation above, this is true if and only if the function \((h \cdot f_j) - f_j \) is in \(I_{n-1}(k[G], H) \). By definition, this means that \(f_j \in I_n(k[G], H) \).

\[\square \]

Theorem 1. (a) For each \(n \geq 0 \), \(\Phi : (I_n(k[G], H) \otimes M)^G \to I_n(M, H) \) is a vector space isomorphism.

(b) If \(r \in (k[G]^H \otimes A)^G \) and \(m \in (I_n(k[G], H) \otimes M)^G \), then \(\Phi(r) \in A^H \) and \(\Phi(rm) = \Phi(r)\Phi(m) \).

Proof. We prove statement (a) by induction on \(n \), the case \(n = 0 \) being immediate. So, suppose that (a) is true for \(n-1 \); we shall show it holds for \(n \). First, suppose that \(v = \Phi(\sum_i f_i \otimes m_i) \) where \((\sum_i f_i \otimes m_i) \in (I_n(k[G], H) \otimes M)^G \) and \(\{m_i\} \) is linearly independent over \(k \). Then, for any \(g \in G \), we have \(v = \Phi(\sum_i (\ell_i g f_i) \otimes g \cdot m_i) = \sum_i (\ell_i g f_i(e)g \cdot m_i) \), that is, \(g^{-1} \cdot v = \sum_i f_i(g^{-1})m_i \). Applying Lemma 2, we may conclude that \(v \in I_n(M, H) \). Conversely, suppose that \(v \in I_n(M, H) \) and that \(v = \Phi(\sum_i f_i \otimes m_i) \) where \((\sum_i f_i \otimes m_i) \in (k[G] \otimes M)^G \) and \(\{m_i\} \) is linearly independent over \(k \). As above, this means that \(g^{-1} \cdot v = \sum_i f_i(g^{-1})m_i \) for any \(g \in G \). Again applying Lemma 2, we see that each \(f_i \in I_n(k[G], H) \).

To show statement (b), let \(r = \sum_j f_j \otimes a_j \in (k[G]^H \otimes A)^G \) and \(m = \sum_i f_i \otimes m_i \in (I_n(k[G], H) \otimes M)^G \). Then,
\[
\Phi(rm) = \Phi(\sum_j f_j f_i \otimes a_j m_i) = \sum_j f_j(e) f_i(e) a_j m_i = \sum_j f_j(e) a_j \sum_i f_i(e) m_i = \Phi(r)\Phi(m).
\]

\[\square \]

Corollary 1. If \(G \) is a finite group, then there is an \(N, 1 \leq N \leq |G| \) so that \(I_n(M, G) = I_N(M, G) \) for all \(n \geq N \).

Proof. First, suppose that \(M = k[G] \). In the sequence of subspaces \(I_0(k[G], G) \subset I_1(k[G], G) \subset \ldots \subset I_m(k[G], G) \subset \ldots \), there must be an \(m \) so that \(I_m(k[G], G) = I_{m+1}(k[G], G) \) since \(\dim k[G] = |G| \). Then \(I_m(k[G], G) = I_n(k[G], G) \) for all \(n \geq m \).

The general result now follows from Theorem 1 since \((I_n(k[G], G) \otimes M)^G \) is isomorphic to \(I_n(M, G) \).

The corollary above is of interest only in the modular case (i.e., when \(p \) divides \(|G| \)) and then it is the best possible according to Example 6. In the non-modular case, all the \(I_n(M, G) = M^G \) (Theorem 3).

If \(G \) is reductive and \(R \) is a commutative, finitely generated \(k \)-algebra on which \(G \) acts rationally, then \(R^G \) is a finitely generated \(k \)-algebra. This celebrated result is due mainly to H. Weyl, C. Chevalley, D. Mumford, M. Nagata, and W. Haboush. For our purposes, we take \(A \) to be a finitely generated \(k \)-algebra and \(R = A \oplus M \) with the multiplication \((a, m)(a', m') = (aa', am' + a'm)\). If \(M \) is a finitely generated \(A \)-module, then \(A \oplus M \) is a finitely generated \(k \)-algebra. Then, by the result just cited, \(R^G = A^G \oplus M^G \) is a finitely generated \(k \)-algebra. Consequently, \(M^G \) is a finitely generated \(A^G \)-module. So that we can cite it later, we state this next.
Theorem 2. Let A be a finitely generated, commutative k-algebra. Let M be an A-module. Let G be a reductive group which acts rationally on A and M. Suppose that the actions of G are compatible with the structure of M as an A-module. If M is a finitely generated A-module, then M^G is a finitely generated A^G-module.

Corollary 2. Suppose that G is a reductive group, A is finitely generated over k, and M is a finitely generated A-module. If $I_n(k[G],H)$ is a finitely generated $k[G]^H$-module, then $I_n(M,H)$ is a finitely generated A^H-module.

Proof. Since $I_n(k[G],H)$ is a finitely generated $k[G]^H$-module, $I_n(k[G],H) \otimes M$ is a finitely generated $k[G]^H \otimes A$-module. Then, by Theorem 2, we see that $(I_n(k[G],H) \otimes M)^G$ is a finitely generated $(k[G]^H \otimes A)^G$-module. We now apply Theorem 1. □

Theorem 3. Suppose that G is a reductive group.

(a) If p does not divide $[G : G^0]$, then $I_n(M,G) = M^G$ for all $n \geq 1$.

(b) If p divides $[G : G^0]$, then $I_n(M,G) = I_n(M^{G^0},G/G^0)$ and there is an N, $1 \leq N \leq [G : G^0]$ so that $I_n(M,G) = I_N(M,G)$ for all $n \geq N$.

Proof. To prove statement (a), we first show that it is true when G acts on $A = k[G]$ by right translation, i.e., we shall show that $I_n(k[G],G) = k$ for all $n \geq 1$. This is true for $n = 1$ so we assume it is true for n and show it for $n + 1$. Let $f \in I_{n+1}(k[G],G)$. By the induction hypothesis, $(g_1 - I_G)(g_2 - I_G)f = 0$ for any $g_1, g_2 \in G$. Proceeding as in Example 3, we see $f_1 = f - f(e)$ is a homomorphism from G to G^0. Since the semi-simple elements are dense in G^0, $f_1|G^0$ is identically 0. Then, $f_1 = 0$ since $p \nmid [G : G^0]$. For the action of G on M, we apply Theorem 1 to see that $I_n(M,G) = \Phi(I_n(k[G],G) \otimes M^G) = \Phi(k \otimes M)^G = M^G$.

To prove (b), we first note that $I_n(M,G) \subset I_n(M,G^0) = M^{G^0}$ by Lemma 1(d) and what was just proved. Then, an induction argument shows that $I_n(M,G) = I_n(M^{G^0},G/G^0)$. Since G/G^0 is finite, we may apply Corollary 1. □

4. Finite generation of $I_n(M,G)$, $\text{chark} = 0$

For applications to ordinary differential equations, we need A^G to be a finitely generated algebra over \mathbb{C} and $I_n(M,G)$ to be a finitely generated A^G-module. Example 4 shows that even in the simplest cases finite generation may not hold when $\text{chark} > 0$. In this section, we study the finite generation property in the case $\text{chark} = 0$.

Theorem 4. Suppose that $\text{chark} = 0$. Suppose also that G is connected, A^G is a finitely generated k-algebra, and M^G is a finitely generated A^G-module. Then $I_n(M,G)$ is a finitely generated A^G-module for all $n = 0, \ldots$.}

Proof. Let \mathcal{L} be the Lie algebra of G. According to Lemma 1(e), each $L_X \in \mathcal{L}$ gives an A^G-module homomorphism from $I_n(M,G)$ to $I_{n-1}(M,G)$. We now show by induction on n that $I_n(M,G)$ is a finitely generated A^G-module for all $n = 0, \ldots$. The case $n = 0$ is immediate. So, assume that $n \geq 1$ and that $I_{n-1}(M,G)$ is a finitely generated A^G-module. Let $\{L_{X_1}, \ldots, L_{X_s}\}$ be a basis for \mathcal{L}. We show by induction on i that

$$\ker L_{X_1} \cap \ldots \cap \ker L_{X_i} \cap I_n(M,G)$$

is a finitely generated A^G-module. When $i = 1$, we have $m \in \ker L_{X_1} \cap \ldots \cap \ker L_{X_i}$ if and only if $L_X \cdot m = 0$ for all $L_X \in \mathcal{L}$, i.e., if and only if $m \in M^G$. Hence,
\[\ker L_{X_1} \cap \ldots \cap \ker L_{X_n} \cap I_n(M, G) = M^G \] which is a finitely generated \(A^G \)-module by assumption. Now suppose that \(\ker L_{X_1} \cap \ldots \cap \ker L_{X_n} \cap I_n(M, G) \) is a finitely generated \(A^G \)-module for \(i \geq 2 \). We show that \(M^* = \ker L_{X_1} \cap \ldots \cap \ker L_{X_n} \cap I_n(M, G) \) is also a finitely generated \(A^G \)-module. Let \(L^*_{X_{n-1}} = L_{X_{n-1}} | M^*. \) Then \(L^*_{X_{n-1}}(M^*) \subset L_{X_{n-1}}(I_n(M, G)) \subset I_{n-1}(M, G) \) so \(L^*_{X_{n-1}}(M^*) \) is an \(A^G \)-submodule of the finitely generated \(A^G \)-module \(I_{n-1}(M, G) \). Also, \[\ker L^*_{X_{n-1}} = \ker L_{X_{n-1}} \cap M^* = \ker L_{X_{n-1}} \cap \ldots \cap \ker L_{X_n} \cap I_n(M, G) \] which is a finitely generated \(A^G \)-module by induction. Hence, \(M^* \) is a finitely generated \(A^G \)-module.

In particular, \(\ker L_{X_n} \cap I_n(M, G) \) is a finitely generated \(A^G \)-module. Consider \(L_{X_n} : I_n(M, G) \rightarrow I_{n-1}(M, G) \). Now, \(L_{X_n}(I_n(M, G)) \) is an \(A^G \)-submodule of the finitely generated \(A^G \)-module \(I_{n-1}(M, G) \) and, so, is finitely generated. We have just shown that the kernel of \(L_{X_n} \) is a finitely generated \(A^G \)-module. It follows that \(I_n(M, G) \) is a finitely generated \(A^G \)-module. \(\qed \)

Theorem 5. Suppose that \(\text{char} k = 0 \), \(A^G \) is a finitely generated \(k \)-algebra, and \(M^G \) is a finitely generated \(A^G \)-module. Then \(I_n(M, G) \) is a finitely generated \(A^G \)-module for all \(n = 0, \ldots, \).

Proof. Since \(A^G \) is finitely generated, so is \(A \) since \(G/G^o \) is a finite group. Furthermore, \(A^G \) is an integral extension of \(A \). By Theorem 4, \(I_n(M, G^o) \) is a finitely generated \(A^G \)-module for all \(n = 0, \ldots, \). Thus, each \(I_n(M, G^o) \) is a finitely generated \(A^G \)-module. Since \(I_n(M, G) \) is an \(A^G \)-submodule of \(I_n(M, G^o) \), it is also finitely generated. \(\Box \)

Corollary 3. With respect to the action of \(G \) on itself by right translation, \(I_n(k[G], G) \) is a finite-dimensional vector space for all \(n = 0, \ldots, \).

In general, the algebra \(k[X]^G \) is not finitely generated over \(k \). However, there are non-zero elements \(f \in k[X]^G \) so that the localization \(k[X]^G \) is a finitely generated \(k \)-algebra. The set of all such \(f \) together with 0 forms an ideal in \(k[X]^G \). Most recently, this ideal has been studied by Derksen and Kemper who call it the finite generation ideal \(G \). Section 2.2.

Corollary 4. Suppose that \(\text{char} k = 0 \) and let \(f \neq 0 \) be in the finite generation ideal for \(k[X] \). Then \(k[X]^G \) is finitely generated over \(k \) and each \(I_n(k[X], G) \) is a finitely generated \(k[X]^G \)-module.

Proof. Since \(f \) is in the finite generation ideal for \(k[X] \), \(k[X]^G = k[X]^G \) is finitely generated over \(k \). Applying Theorem 5, we see that each \(I_n(k[X], G) \) is a finitely generated \(k[X]^G \)-module. \(\Box \)

5. G-EQUIVARIANT POLYNOMIAL MAPPINGS

Let \(R_n G \) denote the unipotent radical of \(G \). As we have seen in Examples 4 and 5, the modules \(I_n(k[X], G) \) may or may not be finitely generated over \(k[X]^G \). In this section, we show that for any finite-dimensional \(G \)-module \(W \), the \(k[X]^G \)-module of \(W \)-relative invariants, \((I_n(k[X], G) \otimes W)^G \) is finitely generated whenever \(k[X]^G \) is a finitely generated \(k \)-algebra. The key idea is to relate the \(I_n(k[X], G) \) to equivariant mappings.
Let W be a finite-dimensional G-module. The vector space of all polynomial mappings from X to W may be identified with $k[X] \otimes W$ and is naturally a $k[X]$-module. A polynomial mapping $F : X \to W$ is said to be G-equivariant if $F(g \cdot x) = g \cdot F(x)$ for all $g \in G, x \in X$. The vector space of all G-equivariant polynomial mappings from X to W may be identified with $(k[X] \otimes W)^G$. It is a $k[X]^G$-module.

Theorem 6. Let G act regularly on an irreducible affine variety X; let W be a finite-dimensional G-module. If $k[X]^{R_aG}$ is a finitely generated k-algebra, then $k[X]^G$ is a finitely generated k-algebra and $(k[X] \otimes W)^G$ is a finitely generated $k[X]^G$-module.

Proof. First, we note that $k[X]^G$ is a finitely generated k-algebra since $k[X]^G = (k[X]^{R_aG})^{G/R_aG}$ and G/R_aG is reductive. If $W^{R_aG} = W$, then, $(k[X] \otimes W)^G = ((k[X] \otimes W^{R_aG})^{G/R_aG} = (k[X]^{R_aG} \otimes W)^{G/R_aG}$. Since $(k[X]^{R_aG} \otimes W)$ is a finitely generated $k[X]^{R_aG}$-module, $(k[X]^{R_aG} \otimes W)^{G/R_aG}$ is a finitely generated $(k[X]^{R_aG})^{G/R_aG}$-module by Theorem 2.

We now proceed by induction on $\dim W$. If $\dim W = 1$, $W^{R_aG} = W$. Otherwise, suppose that $\dim W^{R_aG} < \dim W$ and let $\pi : W \to W/W^{R_aG}$. The subspace W^{R_aG} is G-invariant since R_aG is a normal subgroup of G. Thus, a G-equivariant mapping $F : X \to W$ gives a G-equivariant mapping $\pi \circ F : X \to W/W^{R_aG}$. Let $\overline{F} = \pi \circ F$. The mapping $F \to \overline{F}$ is a $k[X]^G$-homomorphism from the $k[X]^G$-module $(k[X] \otimes W)^G$ to the $k[X]^G$-module $(k[X] \otimes W/W^{R_aG})^G$. The image is a finitely generated $k[X]^G$-module by the induction assumption since $1 \leq \dim W^{R_aG} < \dim W$. The kernel consists of G-equivariant maps from X to W^{R_aG} and is a finitely generated $k[X]^G$-module by what was proved above. Hence, $(k[X] \otimes W)^G$ is a finitely generated $k[X]^G$-module.

For finite group actions, Theorem 6 is proved in [1, Proposition 3.3], for example.

Corollary 5. If $k[X]^{R_aG}$ is a finitely generated k-algebra, then $(I_n(k[X], G) \otimes W)^G$ is a finitely generated $k[X]^G$-module for all $n \geq 0$.

Proof. This follows from Lemma 1(b) and Theorem 6 since $k[X]^G$ is finitely generated and $(I_n(k[X], G) \otimes W)^G$ is a $k[X]^G$-submodule of $(k[X] \otimes W)^G$.

Corollary 6. Let X be an irreducible, affine G-variety. Let $J \subset k[X]^{R_aG}$ be the finite generation ideal for R_aG. Suppose that there is a non-zero $f \in J \cap k[X]^G$. Then, $(k[X^f] \otimes W)^G$ and $(I_n(k[X^f], G) \otimes W)^G$ are finitely generated $k[X^f]^G$-modules.

Proof. Since $f \in J \cap k[X]^G$, $k[X^f]^{R_aG}$ is finitely generated over k. The corollary now follows from Theorem 6 and Corollary 5.

Lemma 3. Let $\dim W = n_0$. If U is a unipotent group, then $(k[X] \otimes W)^U = (I_{n_0}(k[X], U) \otimes W)^U$.

Proof. It is enough to show that $(k[X] \otimes W)^U \subset I_{n_0}(k[X], U) \otimes W$. Let $\{w_1, \ldots, w_{n_0}\}$ be a basis for W and $\{\lambda_1, \ldots, \lambda_{n_0}\}$ the dual basis. Let $F = \sum_i (f_i \otimes w_i) \in (k[X] \otimes W)^U$ be a U-equivariant polynomial mapping from X to W. Let $F^* : k[W] \to k[X]$ be its dual map. Then, $F^*(\lambda_i) = f_i$. Since F is G-equivariant so is F^*. By Example 1, $W^* \subset I_{n_0}(k[W], U)$ so we see that $F^*(W^*) \subset I_{n_0}(k[X], U)$, i.e., $f_i \in I_{n_0}(k[X], U)$.
The condition required in Corollary 6 that there is a non-zero \(f \in J \cap k[X]^G \) is always satisfied if \(k[X]^{R_u,G} \) is finitely generated or if \(G \) is unipotent. For arbitrary linear algebraic groups \(G \), Renner and Rittatore have considered somewhat related questions \[\text{[7]}\]. They define the action of \(G \) on \(X \) to be observable if for any \(G \)-invariant proper, closed subset \(Y \) of \(X \), there is a non-zero \(f \in k[X]^G \) so that \(f|_Y = 0 \). Now, suppose that \(G \) is solvable and let \(E_G(X) = \{ \chi \in X(G) : \text{there is a non-zero} \ f \in k[X] \text{such that} \ gf = \chi(g)f \text{for all} \ g \in G \} \). Then, the action of \(G \) on \(X \) is observable if and only if \(E_G(X) \) is a group \[\text{[7]}\] Corollary 3.16.

Lemma 4. Suppose that \(G \) is solvable, say \(G = TU \), where \(T \) is a maximal torus and \(U \) is the unipotent radical. If the action of \(G \) on \(X \) is observable, then there is a non-zero \(f \in k[X]^G \) so that \(k[X]^G \) is a finitely generated \(k \)-algebra.

Proof. Let \(J \) be the finite generation ideal for \(U \) acting on \(X \). Since \(U \) is a normal subgroup of \(G \), the ideal \(J \) is invariant under \(G \). Thus, there is a non-zero \(\varphi \) in the ideal \(J \) which is a \(T \)-weight vector corresponding, say, to the character \(\chi \in X(T) \). Since \(E_G(X) \) is a group, there is a \(\psi \in k[X]^U \) corresponding to the character \(-\chi\). Let \(f = \varphi \psi \). Then, \(f \in J \cap k[X]^G \).

\[\square\]

6. Representations of the additive group

Throughout this section, we assume that \(\text{char} k = 0 \). Let \(G = SL_2(k) \) be the group consisting of \(2 \times 2 \) matrices \((a_{ij})\) whose determinant is 1. Let \(k[G] = k[x_{11}, x_{12}, x_{21}, x_{22}] \) where \(x_{ij}(g) = a_{ij} \). Let \(U \) (resp. \(U^- \)) be the subgroup of \(G \) consisting of all upper triangular (resp. lower triangular) matrices with 1’s on the diagonal. We may identify \(U \) with the additive group \(G_a \). The group \(G \) acts by left multiplication on the vector space \(V \) consisting of \(2 \times 1 \) column matrices. The actions of \(G \) on \(V \) and \(V^* \) are equivariant. Let \(S(V) \) be the symmetric algebra on \(V \) and let \(S^d(V) \) be elements in \(S(V) \) homogeneous of degree \(d \). We consider the natural action of \(G \) on \(S^d(V) \) and the action of \(G \) by left translation on \(k[G]^U \) and \(I_{n+1}(k[G], U) \)

Theorem 7. With respect to the action of \(U \) on \(k[G] \) by right translation, for each \(n \geq 0, I_{n+1}(k[G], U) \) is a free \(k[G]^U \)-module with basis \(\{x_{12}^{d}x_{22}^{-d} : d = 0, \ldots, n\} \). In particular, \(k[G]^U \otimes S^n(V) \) and \(I_{n+1}(k[G], U) \) are isomorphic as \(G \)-modules.

Proof. Let \(D_\alpha \) (resp. \(D_{-\alpha} \)) be a basis of the Lie algebra of \(U \) (resp. \(U^- \)). Then, \(D_\alpha : x_{11} = D_\alpha : x_{21} = 0, D_\alpha : x_{12} = x_{11}, D_\alpha : x_{22} = x_{21} \) and \(D_{-\alpha} : x_{11} = x_{12}, D_{-\alpha} : x_{21} = x_{22}, D_{-\alpha} : x_{12} = D_{-\alpha} : x_{22} = 0 \). It is known that \(k[G]^U = k[x_{11}, x_{21}] \). Now, \(k[G] \) is a direct sum of irreducible representations of \(G \) acting by right translation on \(k[G] \), say \(k[G] = \bigoplus V_i \). Let \(v_i \) be a non-zero element in \(V_i^U \); any \(a \in k[G]^U \) is a linear combination of the \(v_i \). By Lemma 1(d), \(I_{n+1}(k[G], U) = \bigoplus I_{n+1}(V_i, U) \). Thus, applying Example 2, we see that \(I_{n+1}(k[G], U) \) is the vector space over \(k \) spanned by all the \((D_{-\rho})^r \cdot \alpha, \) where \(0 \leq r \leq n \) and \(\alpha \in k[G]^U \). Since \(k[G]^U = k[x_{11}, x_{21}] \), from the usual rules for differentiating a product, we see that any element in \(I_{n+1}(k[G], U) \) is a \(k[G]^U \)-linear combination of elements of the form \(x_{12}^{d}x_{22}^{-d} \) for \(0 \leq d \leq r \leq n \). However, \(1 = x_{11}x_{22} - x_{12}x_{21} \). Therefore, for \(r < n, x_{12}^{d}x_{22}^{-d} \) can be written as a \(k[G]^U \)-linear combination of the \(x_{12}^{d}x_{22}^{-d} \) since \(x_{12}^{d}x_{22}^{-d} = x_{12}^{d}x_{22}^{-d} \times (x_{11}x_{22} - x_{12}x_{21})^{\alpha-r} \).

Finally, we show that the \(x_{12}^{d}x_{22}^{-d} \) are linearly independent over \(k[G]^U \). Indeed, suppose that \(\sum a_d x_{12}^{d}x_{22}^{-d} = 0 \) where each \(a_d \in k[G]^U \). Let \(r \) be the smallest
Theorem 8 ([8]). If $W = V \oplus S^2(V)$, then $(k[W] \otimes S^n(V))^G$ is a Cohen-Macaulay $k[W]^G$-module for all n. If $W = V \oplus S^d(V)$ with $d > 2$, then $(k[W] \otimes S^n(V))^G$ is a Cohen-Macaulay $k[W]^G$-module if and only if $n + 1 < \frac{(d+1)^2}{4}$ for d odd or $n + 1 < \frac{d(d+2)}{4}$ for d even.

Theorem 9. $I_{n+1}(k[S^d(V)], U)$ is a Cohen-Macaulay module over $k[S^d(V)]^U$ for all n when $d = 2$. When $d > 2$, $I_{n+1}(k[S^d(V)], U)$ is a Cohen-Macaulay module over $k[S^d(V)]^U$ if and only if $n + 1 < \frac{(d+1)^2}{4}$ for d odd or $n + 1 < \frac{d(d+2)}{4}$ for d even.

Proof. We first apply Theorem 1 to see that $I_{n+1}(k[S^d(V)], U)$ is isomorphic to $(I_{n+1}(k[G], U) \otimes k[S^d(V)])^G$ which, by Theorem 7, is $(k[G]^U \otimes S^n(V) \otimes k[S^d(V)])^G$. Now, $k[G]^U = k[x_{11}, x_{21}]$ which may be identified with $k[V]$ as a G-module. Therefore, $I_{n+1}(k[S^d(V)], U)$ is isomorphic to

$$(k[V] \otimes k[S^d(V)] \otimes S^n(V))^G = (k[V \times S^d(V)] \otimes S^n(V))^G.$$

Let $W = V \times S^d(V)$. Then, we have $k[W]^G = k[V \times S^d(V)]^G = (k[G]^U \otimes k[S^d(V)])^G = k[S^d(V)]^U$ according to Theorem 1. We now apply Theorem 8 with $W = V \times S^d(V)$ to prove the theorem. □

7. Differential equations

Our interest in modules of higher invariants comes from our study of G-symmetric ordinary differential equations [4]. Thus, it seems appropriate to sketch some of the connections of this paper with ordinary differential equations. Let $\text{char} k = 0$ (in particular, we may take $k = \mathbb{C}$) and let $W := k^n$. Consider the ordinary differential equation

$$\dot{x} = \frac{dx}{dt} = F(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_n(x) \end{pmatrix}$$

on W with each $f_i \in k[W] = k[x_1, \ldots, x_n]$. (One may think of solutions as formal power series, in general.) To F we assign the derivation $L_F = \sum_i f_i \frac{\partial}{\partial x_i}$ of $k[x_1, \ldots, x_n]$. Then, for any polynomial $\phi(x_1, \ldots, x_n)$ and any solution $v(t)$ to the differential equation above, we have $\frac{d}{dt} \phi(v(t)) = (L_F \phi)(v(t))$: we write ϕ instead of $L_F \phi$. We call L_F a G-equivariant derivation if L_F commutes with the natural action of G on $k[W]$. One verifies that L_F is G-equivariant if and only if the corresponding map F is G-equivariant.

As always, let X be an irreducible, G-invariant affine subvariety of W and assume that L_F sends the vanishing ideal of X to itself. We may then consider the f_i as elements of $k[X]$ and L_F as a derivation of $k[X]$. In this case, it can be shown that
if $x \in X$, then $F(x)$ is tangent to X. Thus, the differential equation above can be considered as a differential equation on X.

It follows immediately from Lemma 1(d) that if L_F is G-equivariant then it maps each $I_m(k[X], G)$, $m = 1, 2, \ldots$ to itself. For $m = 1$ this fact has been utilized for a long time to obtain a reduced system corresponding to the differential equation above as follows. Assume that $I_1(k[X], G) = k[X]^G$ admits a finite set of generators ϕ_1, \ldots, ϕ_r. Then there exist polynomials ψ_j such that $\phi_j = L_F(\phi_j) = \psi_j(\phi_1, \ldots, \phi_r)$ for $1 \leq j \leq r$. Letting

$$\Phi = \begin{pmatrix} \phi_1 \\ \vdots \\ \phi_r \end{pmatrix}, \quad \Psi = \begin{pmatrix} \psi_1 \\ \vdots \\ \psi_r \end{pmatrix},$$

the previous equation shows that Φ sends solutions of $\dot{x} = F(x)$ to solutions $(\phi_1(x(t)), \ldots, \phi_r(x(t)))$ of the “reduced system” $\dot{y} = \Psi(y)$ on $Y := \Phi(X)$.

We can extend this procedure as follows. If the module $I_m(k[X], G)$ has a finite set $\theta_{m,1}, \ldots, \theta_{m,\ell_m}$ of generators, there exist polynomials h_{ij} such that

$$\theta_{m,i} = L_F(\theta_{m,i}) = \sum_j h_{ij}(\phi_1, \ldots, \phi_r)\theta_{m,j}, \quad 1 \leq i \leq \ell_m. \quad (*)$$

Thus $\Theta_m := (\theta_{m,1}, \ldots, \theta_{m,\ell_m})$ maps solutions of $\dot{x} = F(x)$ to solutions of the non-autonomous linear differential equation

$$\dot{z} = H(y) \cdot z, \quad H(y) := (h_{ij}(y)),$$

where y stands for a solution of the reduced equation above.

This observation may not provide useful information for arbitrary groups, but it is quite valuable if $G = U$ is unipotent and $k[X]^U$ is finitely generated. Indeed, by Example 1, each $x_i \in I_n(k[X], U)$. It then follows from Theorem 4 and equation $(*)$ above, read with $m := n$, that once solutions $(\phi_1(x(t)), \ldots, \phi_r(x(t)))$ to the reduced system are found, solutions to the original system can be found by solving a system of non-autonomous linear differential equations. In other words, given a U-symmetric differential equation $\dot{x} = F(x)$ on the variety X, there remains only a non-autonomous linear differential equation modulo the reduced system $\dot{y} = \Psi(y)$. Using the inclusions $I_2(k[X], U) \subseteq \cdots \subseteq I_n(k[X], U)$, one may refine this to obtain a kind of echelon form for the linear system. In the special case $X = k^n$, this result was proved under stronger hypotheses in [4 Proposition 1 and Corollary 1]. The comments above give an analogous statement for an arbitrary irreducible variety X. The extension to varieties of the rest of the program carried out in [4] will be taken up elsewhere.

References

Department of Mathematics, West Chester University, West Chester, Pennsylvania 19383
E-mail address: fgrosshans@wcupa.edu

Lehrstuhl A für Mathematik, RWTH Aachen, 52056 Aachen, Germany
E-mail address: walcher@mathA.rwth-aachen.de