Skew product attractors and concavity
HTML articles powered by AMS MathViewer
- by Lluís Alsedà and Michał Misiurewicz
- Proc. Amer. Math. Soc. 143 (2015), 703-716
- DOI: https://doi.org/10.1090/S0002-9939-2014-12271-4
- Published electronically: October 3, 2014
- PDF | Request permission
Abstract:
We propose an approach to the attractors of skew products that tries to avoid unnecessary structures on the base space and rejects the assumption on the invariance of an attractor. When nonivertible maps in the base are allowed, one can encounter the mystery of the vanishing attractor. In the second part of the paper, we show that if the fiber maps are concave interval maps, then contraction in the fibers does not depend on the map in the base.References
- Lluís Alsedà and MichałMisiurewicz, Attractors for unimodal quasiperiodically forced maps, J. Difference Equ. Appl. 14 (2008), no. 10-11, 1175–1196. MR 2447193, DOI 10.1080/10236190802332274
- Ll. Alsedà and M. Misiurewicz, Random interval homeomorphisms, preprint, 2013.
- Ludwig Arnold, Random dynamical systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. MR 1723992, DOI 10.1007/978-3-662-12878-7
- Kristian Bjerklöv, Positive Lyapunov exponent and minimality for a class of one-dimensional quasi-periodic Schrödinger equations, Ergodic Theory Dynam. Systems 25 (2005), no. 4, 1015–1045. MR 2158395, DOI 10.1017/S0143385704000999
- Kristian Bjerklöv, Dynamics of the quasi-periodic Schrödinger cocycle at the lowest energy in the spectrum, Comm. Math. Phys. 272 (2007), no. 2, 397–442. MR 2300248, DOI 10.1007/s00220-007-0238-y
- Kristian Bjerklöv, SNA’s in the quasi-periodic quadratic family, Comm. Math. Phys. 286 (2009), no. 1, 137–161. MR 2470927, DOI 10.1007/s00220-008-0626-y
- Hans Crauel and Franco Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields 100 (1994), no. 3, 365–393. MR 1305587, DOI 10.1007/BF01193705
- Àlex Haro, On strange attractors in a class of pinched skew products, Discrete Contin. Dyn. Syst. 32 (2012), no. 2, 605–617. MR 2837075, DOI 10.3934/dcds.2012.32.605
- Tobias Jäger, Strange non-chaotic attractors in quasiperiodically forced circle maps, Comm. Math. Phys. 289 (2009), no. 1, 253–289. MR 2504850, DOI 10.1007/s00220-009-0753-0
- Àngel Jorba, Joan Carles Tatjer, Carmen Núñez, and Rafael Obaya, Old and new results on strange nonchaotic attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 17 (2007), no. 11, 3895–3928. MR 2384391, DOI 10.1142/S0218127407019780
- Gerhard Keller, A note on strange nonchaotic attractors, Fund. Math. 151 (1996), no. 2, 139–148. MR 1418993
- Sergiĭ Kolyada, MichałMisiurewicz, and Ľubomír Snoha, Topological entropy of nonautonomous piecewise monotone dynamical systems on the interval, Fund. Math. 160 (1999), no. 2, 161–181. MR 1706474, DOI 10.4064/fm-160-2-161-181
- John Milnor, On the concept of attractor, Comm. Math. Phys. 99 (1985), no. 2, 177–195. MR 790735
- William Parry, Entropy and generators in ergodic theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0262464
- Michael Scheutzow, Comparison of various concepts of a random attractor: a case study, Arch. Math. (Basel) 78 (2002), no. 3, 233–240. MR 1888707, DOI 10.1007/s00013-002-8241-1
Bibliographic Information
- Lluís Alsedà
- Affiliation: Departament de Matemàtiques, Edifici Cc, Universitat Autònoma de Barcelona, 08913 Cerdanyola del Vallès, Barcelona, Spain
- MR Author ID: 212847
- Email: alseda@mat.uab.cat
- Michał Misiurewicz
- Affiliation: Department of Mathematical Sciences, Indiana University–Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202
- MR Author ID: 125475
- Email: mmisiure@math.iupui.edu
- Received by editor(s): July 16, 2012
- Received by editor(s) in revised form: May 5, 2013
- Published electronically: October 3, 2014
- Additional Notes: The first author was partially supported by the MICINN grant numbers MTM2008-01486 and MTM2011-26995-C02-01.
- Communicated by: Nimish Shah
- © Copyright 2014 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 703-716
- MSC (2010): Primary 37C55, 37C70
- DOI: https://doi.org/10.1090/S0002-9939-2014-12271-4
- MathSciNet review: 3283657