Attracting sets on surfaces
HTML articles powered by AMS MathViewer
- by J. Iglesias, A. Portela, A. Rovella and J. Xavier
- Proc. Amer. Math. Soc. 143 (2015), 765-779
- DOI: https://doi.org/10.1090/S0002-9939-2014-12274-X
- Published electronically: October 16, 2014
- PDF | Request permission
Abstract:
Let $f$ be a continuous endomorphism of a surface $M$, and $A$ an attracting set such that the restriction $f|_A: A \to A$ is a $d:1$ covering map. We show that if $f$ is a local homeomorphism, then $f$ is also a $d:1$ covering of the immediate basin of $A$. Moreover, the techniques provide a characterization of invariant $d:1$ continua on surfaces. These results are no longer true on manifolds of dimensions at least three.References
- Artur Avila, Sébastien Gouëzel, and Masato Tsujii, Smoothness of solenoidal attractors, Discrete Contin. Dyn. Syst. 15 (2006), no. 1, 21–35. MR 2191383, DOI 10.3934/dcds.2006.15.21
- Nobuo Aoki, Kazumine Moriyasu, and Naoya Sumi, $C^1$-maps having hyperbolic periodic points, Fund. Math. 169 (2001), no. 1, 1–49. MR 1852352, DOI 10.4064/fm169-1-1
- Rodrigo Bamón, Jan Kiwi, Juan Rivera-Letelier, and Richard Urzúa, On the topology of solenoidal attractors of the cylinder, Ann. Inst. H. Poincaré C Anal. Non Linéaire 23 (2006), no. 2, 209–236 (English, with English and French summaries). MR 2201152, DOI 10.1016/j.anihpc.2005.03.002
- Jorge Buescu, Exotic attractors, Progress in Mathematics, vol. 153, Birkhäuser Verlag, Basel, 1997. From Liapunov stability to riddled basins. MR 1488418, DOI 10.1007/978-3-0348-7421-2
- Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR 511133
- J. Iglesias, A. Portela, and A. Rovella, $C^1$ stable maps: examples without saddles, Fund. Math. 208 (2010), no. 1, 23–33. MR 2609218, DOI 10.4064/fm208-1-2
- J. Iglesias, A. Portela, and A. Rovella, $C^1$ stability of endomorphisms on two-dimensional manifolds, Fund. Math. 219 (2012), no. 1, 37–58. MR 2990545, DOI 10.4064/fm219-1-3
- Feliks Przytycki, On $U$-stability and structural stability of endomorphisms satisfying Axiom A, Studia Math. 60 (1977), no. 1, 61–77. MR 445553, DOI 10.4064/sm-60-1-61-77
- Carsten Thomassen, The Jordan-Schönflies theorem and the classification of surfaces, Amer. Math. Monthly 99 (1992), no. 2, 116–130. MR 1144352, DOI 10.2307/2324180
- Masato Tsujii, Fat solenoidal attractors, Nonlinearity 14 (2001), no. 5, 1011–1027. MR 1862809, DOI 10.1088/0951-7715/14/5/306
Bibliographic Information
- J. Iglesias
- Affiliation: Facultad de Ingenieria, Universidad de La República, IMERL, Julio Herrera y Reissig 565, C. P. 11300, Montevideo, Uruguay
- Email: jorgei@fing.edu.uy
- A. Portela
- Affiliation: Facultad de Ingenieria, Universidad de La República, IMERL, Julio Herrera y Reissig 565, C. P. 11300, Montevideo, Uruguay
- Email: aldo@fing.edu.uy
- A. Rovella
- Affiliation: Facultad de Ciencias, Universidad de La República, Centro de Matemática, Iguá 4225, C. P. 11400, Montevideo, Uruguay
- Email: leva@cmat.edu.uy
- J. Xavier
- Affiliation: Facultad de Ingenieria, Universidad de La República, IMERL, Julio Herrera y Reissig 565, C. P. 11300, Montevideo, Uruguay
- Email: jxavier@fing.edu.uy
- Received by editor(s): August 3, 2012
- Received by editor(s) in revised form: March 13, 2013, May 3, 2013, May 7, 2013, May 20, 2013, May 22, 2013, and May 27, 2013
- Published electronically: October 16, 2014
- Communicated by: Nimish Shah
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 143 (2015), 765-779
- MSC (2010): Primary 37C70; Secondary 37B25
- DOI: https://doi.org/10.1090/S0002-9939-2014-12274-X
- MathSciNet review: 3283663