A modified Riemann zeta distribution in the critical strip
HTML articles powered by AMS MathViewer
- by Takashi Nakamura
- Proc. Amer. Math. Soc. 143 (2015), 897-905
- DOI: https://doi.org/10.1090/S0002-9939-2014-12279-9
- Published electronically: October 31, 2014
- PDF | Request permission
Abstract:
Let $\sigma , t \in {\mathbb {R}}$, $s=\sigma +\textrm {{i}}t$ and $\zeta (s)$ be the Riemann zeta function. Put $f_\sigma (t):=\zeta (\sigma -\textrm {{i}}t)/(\sigma -\textrm {{i}}t)$ and $F_\sigma (t):= f_\sigma (t)/f_\sigma (0)$. We show that $F_\sigma (t)$ is a characteristic function of a probability measure for any $0 < \sigma \ne 1$ by giving the probability density function. By using this fact, we show that for any $C \in {\mathbb {C}}$ satisfying $|C| > 10$ and $-19/2 \le \Re C \le 17/2$, the function $\zeta (s) + Cs$ does not vanish in the half-plane $\sigma >1/18$. Moreover, we prove that $F_\sigma (t)$ is an infinitely divisible characteristic function for any $\sigma >1$. Furthermore, we show that the Riemann hypothesis is true if each $F_\sigma (t)$ is an infinitely divisible characteristic function for each $1/2 < \sigma <1$.References
- T. Aoyama ; T. Nakamura, Multidimensional polynomial Euler products and infinitely divisible distributions on ${\mathbb {R}}^d$, submitted, (2012), arxiv.org/abs/1204.4041.
- Tom M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. MR 0434929
- Harald Bohr and Börge Jessen, Über die Werteverteilung der Riemannschen Zetafunktion, Acta Math. 58 (1932), no. 1, 1–55 (German). MR 1555343, DOI 10.1007/BF02547773
- Philippe Biane, Jim Pitman, and Marc Yor, Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions, Bull. Amer. Math. Soc. (N.S.) 38 (2001), no. 4, 435–465. MR 1848256, DOI 10.1090/S0273-0979-01-00912-0
- B. V. Gnedenko and A. N. Kolmogorov, Limit distributions for sums of independent random variables, Revised edition, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1968. Translated from the Russian, annotated, and revised by K. L. Chung; With appendices by J. L. Doob and P. L. Hsu. MR 0233400
- Allan Gut, Some remarks on the Riemann zeta distribution, Rev. Roumaine Math. Pures Appl. 51 (2006), no. 2, 205–217. MR 2275304
- Dennis A. Hejhal, On a result of G. Pólya concerning the Riemann $\xi$-function, J. Analyse Math. 55 (1990), 59–95. MR 1094712, DOI 10.1007/BF02789198
- Aleksandar Ivić, The Riemann zeta-function, Dover Publications, Inc., Mineola, NY, 2003. Theory and applications; Reprint of the 1985 original [Wiley, New York; MR0792089 (87d:11062)]. MR 1994094
- Børge Jessen and Aurel Wintner, Distribution functions and the Riemann zeta function, Trans. Amer. Math. Soc. 38 (1935), no. 1, 48–88. MR 1501802, DOI 10.1090/S0002-9947-1935-1501802-5
- A. Ya. Khintchine, Limits Theorem for Sums of Independent Random Variables (in Russian), Moscow and Leningrad, 1938.
- J. C. Lagarias and E. Rains, On a two-variable zeta function for number fields, Ann. Inst. Fourier (Grenoble) 53 (2003), no. 1, 1–68 (English, with English and French summaries). MR 1973068
- Jeffrey C. Lagarias and Masatoshi Suzuki, The Riemann hypothesis for certain integrals of Eisenstein series, J. Number Theory 118 (2006), no. 1, 98–122. MR 2220265, DOI 10.1016/j.jnt.2005.08.010
- Antanas Laurinčikas, Limit theorems for the Riemann zeta-function, Mathematics and its Applications, vol. 352, Kluwer Academic Publishers Group, Dordrecht, 1996. MR 1376140, DOI 10.1007/978-94-017-2091-5
- Gwo Dong Lin and Chin-Yuan Hu, The Riemann zeta distribution, Bernoulli 7 (2001), no. 5, 817–828. MR 1867083, DOI 10.2307/3318543
- Kohji Matsumoto, Probabilistic value-distribution theory of zeta-functions [translation of Sūgaku 53 (2001), no. 3, 279–296; MR1850006], Sugaku Expositions 17 (2004), no. 1, 51–71. Sugaku Expositions. MR 2073363
- T. Nakamura and Łukasz Pańkowski, On complex zeros off the critical line for non-monomial polynomial of zeta-functions, submitted, (2012), arXiv:1212.5890.
- Ken-iti Sato, Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, 1999. Translated from the 1990 Japanese original; Revised by the author. MR 1739520
- Jörn Steuding, Value-distribution of $L$-functions, Lecture Notes in Mathematics, vol. 1877, Springer, Berlin, 2007. MR 2330696
- P. R. Taylor, On the Riemann zeta function, Quart. J. Math. Oxford Ser. 16 (1945), 1–21. MR 12626, DOI 10.1093/qmath/os-16.1.1
- E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550
Bibliographic Information
- Takashi Nakamura
- Affiliation: Graduate School of Mathematical Sciences, The University of Tokyo 3-8-1 Komaba Meguro-ku Tokyo 153-8914, Japan
- MR Author ID: 755913
- Email: takashin@ms.u-tokyo.ac.jp
- Received by editor(s): April 9, 2013
- Received by editor(s) in revised form: May 24, 2013, and June 3, 2013
- Published electronically: October 31, 2014
- Additional Notes: The author would like to thank the referees for their constructive and helpful comments and suggestions on the manuscript.
- Communicated by: Mark M. Meerschaert
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 143 (2015), 897-905
- MSC (2010): Primary 60E10, 11M06; Secondary 60E07, 11M26
- DOI: https://doi.org/10.1090/S0002-9939-2014-12279-9
- MathSciNet review: 3283676